Examen de l'atome à la puce / PL1 / A. Moretto Calculatrice indispensable / fiche de synthèse de cours sur une page recto-verso autorisée.

Remarques:

- Tous les exercices proposés ont, hormis la partie de cours, été traités en TD.
- Soyez concis
- Précisez les unités
- Soignez votre présentation.

On rappelle:

- Constante de Boltzmann k = 1,35.10-23 J/K
- Perméabilité du vide ε₀ = 8,85.10⁻¹² F/m
- Perméabilité relative $\varepsilon_r = 13.1$

Température 300K	Si
n _i /cm ³	1.5.1010
$\mu_n \text{ cm}^2/\text{V.s}$	1350
$\mu_{\rm p} {\rm cm^2/V.s}$	480
D _p cm ² /s	6.5
$D_n \text{ cm}^2/\text{s}$	31

Questions préliminaires :

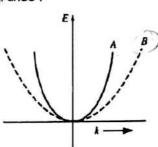
- a. Que représente physiquement le « gap » d'un semi-conducteur ? Quel en est l'ordre de grandeur pour le Silicium ?
- b. On rappelle que la densité surfacique de courant, dans un semi-conducteur, est donnée

$$\vec{j}_n = qD_n \frac{\partial n}{\partial x} + q\mu_n n\vec{E}$$

- i. Que représente physiquement \vec{E} , en quelle unité exprime t-on son module ?
- ii. Quel est le lien entre D_n et μ_n ?

Structure cristalline des solides

1. Soit un matériau cubique à corps centré (cubique centré) de paramètre de maille a=5 Å. Calculez la densité volumique d'atomes par cm³.


Statistique de Fermi.

 Calculez la probabilité pour qu'un électron ait une énergie de 3kT supérieure à l'énergie de Fermi à T = 300K.

Examen de l'atome à la puce / PL1 / A. Moretto Calculatrice indispensable / fiche de synthèse de cours sur une page recto-verso

Structure de bande.

3. Parmi les deux bandes de conduction tracées ci-dessous, laquelle conduit à la masse effective d'électrons la plus grande?

4. Laquelle de ces deux bandes de valence conduit à une masse de trou la plus importante?

ATA= IXTE

Densité d'états et niveau de Fermi.

5. Calculez la concentration intrinsèque de l'arséniure de galium à T = 300K puis à T = 450K sachant qu'à T = 300K Nc = $4.7.10^{17}$ cm⁻³ et Nv = $7.0.10^{18}$ cm⁻³ et Eg = 1.42 eV. Nc et Nv T= 300K - 430K np= Nc. Nor exp (eta) , 90859 varient comme $T^{3/2}$.

Phénomènes de transport.

6. Calculez la densité de courant de dérive en électrons et en trous pour du Si dopé $N_d = 10^{15}$ cm⁻³ et $N_a = 10^{14}$ cm⁻³ et soumis à un champ électrique E = 35V/cm. n+Na = p+Nd N. p= h, 2

La jonction PN.

- 7. Soit une jonction abrupte au Silicium pour laquelle N_d = 10^{17} cm⁻³ et N_a = 5.10^{17} cm⁻³. Calculez V_d à T = 300K. Déterminez la température pour laquelle V_d est réduite de 1%.
- 8. On reprend la jonction de l'exercice 6. La surface de cette jonction est de 10-4 cm² et on lui applique une tension inverse de 5V. Calculez V_d, x_n, x_p, W, E_{max} et la capacité de jonction.