ms of lsaming C may be modeled by thres stepe:

leratand the language syntax;
w what meaning the translator will ascribe to propery formed consiructions;

wlap a programming style fitting for the language.

luhthisbookmdwgmdtohdpthemadermroughmptwo They will
1 the reader's mastery of the basic rules of C and lead the reader into seldom-
somaers, beyond reasonable limits, and past a few open pits. In shont, they
W reader with insight into C that is usually only gained through considerable
‘. .

wzle Book is a workbook intended to be used with a C language textbook. The
ivided into sactions, each containing C programs that explore a particular aspect
ompanying detailed descriptions of how the programs work are tips and caveatls
J successful C programs. .

sbenfue) Susuesiold 9 sy sy sezzg SO OH mznd 2 JHL

book of interest. . .

ogramming Language by Brian W. Kemighan and Dennis M. Ritchie is the
taxthook on the C language. it includes a tutorial introduction to C giving a
ntation to most of the language; it incorporates complete programs s

i; it describes the standard 110 Sibrary showing how 1o write programs that can
t betwesn compuier sysiems; and it illusirates how 1o interface with the UNIX
3 System,

? 1978 228 p

H3N3d

410

058

PUZZLE
BOOK

Puz2jes for the C Programming Langu
ALAN R.FEUER

PRENTICE-HALL SOFTWARE SERIES

Brian W, Kernighan, advisor

THE C PUZZLE BOOK

Alan R, Feuer

Bell Laboratories
Murray Hill, New Jersey 63 7 0
0538

FTuD OPMAAT
AN, h‘l“.\y
é, \._\. A."fl/
Yy
;»

T ks,
PRILPS mig.. YDt g)

PRENTICE-HALL, INC.,
Englewood Cliffs, NJ 07632

L..._ry of Congress Cataloging in Publicarion Dara

Feuer, Alan.
The C puzzle book.

(Prentice-Hall software series)
Includes index.

system} jtle. I[. Series.
QAT6.7 3.C15Fa8 001.64°24 ?\2-5 302

ISBN 0-13-109934-5 ACR2
[SEN 0-13-109926-3 (pbk.}

Editorial] production supervision: Nancy Milnamiow
Cover design: Ray Lundgren
Manufacturing buver: Gordon Oshourne

@ 1982 by Bell Laborataries, Incorporated

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

0 9 87 6 35 4

ISBN 0-13-109934-5
ISBN 0-13-10992k-Y4 {pbk.}

Prentice-Hall International. In¢., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada. Ltd., Toronto
Prentice-Hall of India Private Limited, New Deihi
Prentice-Hall of Japan, In¢., Tokye

Prentice-Hall of Southeast Asia Pie. Lid.. Singapore
Whitehall Books Limited, Weilington, New Zealand

1. € (Clom‘Futer program la_ngusge) 2. UNIX {Computer

CONTENTS

Preface ...ocoviiviiiiiiiiiie i

PUZZLES

OPETALOTS....coviverrveareesnesrassnasssnsanes

1. Basic Arithmetic Operators 3

2. Assignment Operators 5

3. Logic and Increment Operators 7
4. Bitwisc Operators 9
5

Relational and Conditional Operators 11
6. Operator Precedence and Evaluation 13

Basic TYPES-..oviirerreerreeernsnsinnrnss

1. Character, String, and Integer Types 17

2. Integer and Floating Point Casts 19

3. More Casts 21
Included Files..................
Control Flow ...

1. if Statement 27

2. while and for Statements 29

3. Statement Nesting 31

crrereareeenenn PARE Vil

serereaneeepage |

corsosaaseassarsannese. pAgE 15

e page 23

reesinireapesesesrares.PagE 25

4, switch, break, and continue Statements 33

Programming Style...........covnnneiienann
L. Choose the Right Coadition 37
2. Choosec the Right Construct 39
Storage Classes........occeovvvrreneinriennn.
i. Blocks 43
2. Functions 45
3. More Functions 47
4. Files 49

T I E LT LT LT T

B

oo page 35

terremerapage 41

ONTENTS

IALETS I ALTRYSu.cvvseorrreorsemsssrrorssississsssmssisssssssssnissssrssasyensens page 51
1. Simple Pointer and Array 33

2. Ay of Pointers 55

3. Multidimensional Array 57

4. Pointer Stew 39

1. Simple Structure, Nested Structure 63
2. Array of Structures 65
3. Array of Pointers to Structures 67

1. The Preprocessor Doesn’t Know cT
2. Caution Pays 73

UTIONS
IPELRLOTS covvensvssssmsrrrsssecosssssssssesisssssabassssssrt sttt e page 77
o 97
PRI 3 MRS EREREE pagclos
>ontrol Flow ot sss s seassasenasissansarsssriassrasseesasosess PABE "
rogramming Stylepage N
. . 1
HOTARE CHASSES .o rvvvmerrrrmssssansssssscrsosismmsmmsrsssrsssimmassssa st sssens page X
Yointers and Arrayspage 12
.page 158
PIEPEOCESSOT <.vvvvsasersrrsssirssssssssessssaras o sarimesetasa s carmssss e eess pag
*ENDICES
165
1. Precedence Table .o icrinnaisissscoscisimrensansisssutessarsemavreess page
4
2. Operator SUMMATY Table..ocovcrivmrmossesmmasmnrsesseermimasseeers page 16
171
3. ASCIE TABIE .vvvrrieceensrsrmsssrssssmessssmssssssamssiasssrassssessisssssassusssscos page
4. Type HIerarchy CRAfl......cowveemeisssssssssmmronirsommssmsnssesserssss page 173

PREFACE

C is not a large language. Measured by the weight of its reference manual, C could even
classified as small. The small size reflects a lack of confining rules rather than a lack of pow
Users of C learn early to appreciate the ¢legance of expression afforded by its clear design.

Such clegance might secem needlessly arcane for new C programmers, The lack of restrictic
means that C programs can be and are written with full-bodied expressions that may appear
printing errors to the novice. The cohesiveness of C often admits clear, but terse, ways
express common programming tasks.

The process of learning C, as for any programming language, may be modeled by three ste
(no doubt repeated many times over). Step one is to understand the language syntax, at le
to the point where the translator no longer complains of meaningless constructions. Step twe
to know what meaning the translator will ascribe to properly formed constructions. And st

three is to develop a programming style fitting for the language; it is the an of writing cle
concise, and correct programs.

The puzzles in this book are designed to help the reader through the second step. They w»
challenge 1he reader’s mastery of the basic rules of C and lead the reader into seldom reach
corners, beyond reasonable limits, and past a few open pits. (Yes, C, as all real languages,
its share of obscurities that are learned by experience.)

The puzzles should nor be read as samples of good coding; indeed, some of the code
atrocious. But this is to be expected. Often the same qualities that make a program poor ma
a puzzle interesting:

o ambiguity of expression, requiring a rule book to interpret;
e complexity of structure, data and program structure not easily kept in one’s head;

e obscurity of usage, using concepts in nonstandard ways.

C is still an evolving language. Depending upon the vintage of your local compiler, some
the features explored here may not be implemented and some of the implemented features m:
not be explored here. Fortunately, the evolution of C has proceeded uniformly, so it is ve

unlikely that your compiler will have a feature implemented in a different way than describn
here.

HOW TO USE THIS BOOK

The C Puzzle Book is a workbook intended to be used with a C language textbook such as The
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978), Th
book is divided into sections with one major topic per section. Each scction comprises

programs that explore different aspects of the section topic. The programs are sprinkled wit
print statemenis. The primary task is to discover what each program prints, All of th

viii PREFACE

programs are independent of one another, though the later puzzles assume that you understand
the properties of C illustrated in earlier puzzles,

The output for each program is given on the page foliowing the text of the program. Each of
the programs was run from the text under the UNIXY Operating System on Digital Equipment
Corporation PDP 11/70 and VAX 11/780 computers. For the few cases where the output is
different on the two machines, output is given from both.

The larger portion of the book is devoted to step-by-siep derivations of the puzzle solutions.
Many of the derivations are accompanied by tips and caveats for programming in C.
A typical scenario for using the puzzles might go like this:
Read about a topic in the language textbook.
o For cach program in the puzzle book section on the topic
— Work the puzzles of the program.
— Compare your answers to the program output.
— Read the solution derivations.

ACENOWLEDGEMENTS

The first C puzzles were developed for an introductory C programming course that | taught at
Bell Laboratorics. The encouraging response from students led me to hone the puzzles and
embellish the solutions. A number of my friends and colleagues have given valuable
comments and corrections to various drafis of this book. They are Al Boysen, Jr., Jeanneue
Feuer, Brian Kernighan, John Linderman, David Nowitz, Elaine Piskorik, Bill Roome, Keith
Vollherbst, and Charles Wetherell. Finally, 1 am grateful for the fruitful environment and
generous support provided me by Bell Laboratories.

Alan Feuer

t UNIX is a trademark of Bell Laboratories.

THE C PUZZLE BOOK

PUZZLES

Operators

Basic Arithmetic Operators
Agsignment Operators

Logic and Increment Operators
Bitwise Operators

Relational and Conditional Opcrators
Operator Precedence and Evaluation

A A o

C programs are built from statements, statemenis from expressions, and
cxpressions from operators and operands. C is unusually rich in operators; sce
the operator summary of Appendix 2 if you neced convincing. Because of this
richness, the rules that deiermine how operators apply to operands play a
central role in the understanding of expressions. The rules, known as
‘precedence and associativity, are summarized in the precedence table of
Appendix 1. Use the table to solve the problems in this section.

PUZZLes 3

Operators 1: Basic Arithmetic Operators

What does the following program print?

main{)

{
int x;
X = -3+ 4 %5 - 6; printf(*%d\n",x); {Operators 1.1)
X =3 +4%5 - 6; printf{"%a\n",x}; {Operators 1.2
x = -3 »» 4% -6/ 5; printf("Xd\n",xn); {Operators 1.3)
x=(7+6)%X5/ 2; printf("%Xd\n",x); (Operators [.4)

PUZZLES

PUZZLES
Operators 1: Basic Arithmetic Operators '- Operators 2: Assignment Operators
T What does the following program print?
i (Operators 1.1} #define PRINTX printf("¥d\n",x}
1 (Operators 1.2) : main{)
0 {Operators 1.3) ¢ {
4 :
1 {Oﬂl‘m&'l) int x=2, y, z;}
e x #«= 3 + 2:; PRINTX; {Operaiors 2.1)
Derivations begin on page 77. X #= y = z = 4; PRINTX; {Operators 2.2}
x = y == z; PRINTX; {Operators 2.3}
x == { y = 2); PRINTX; {Operators 2.4)

C N g SE Y RER

R

"l R T YA

PUZZLES ! PUZZLES 7

R Y

Operators 2: Assignment Operators Operators 3: Logic and Increment Operators

What does the following program print?

YTPUT.
10 (Operators 2.1) i #define PRINT{int) printf{"%d\n",int)
40 {Operators 2.2) in()
i main
1 {Operators 2.3) ; {
1 (Operators 2.4)] .
: int x, ¥, 2;
X =2, y=1 2z = 03
PRINT{ x 1 | y &5 2z); {Operators 3.2)
X =y = 1;
zZ = x ++ - 1; PRINT{x); PRINT(z); {Operators 3.3)
Z += - X ++ + ++ ¥y; PRINT{x}; PRINT(z); {Operators 3.4)
Z = x / ++ x; PRINT(z): {Operators 3.5)

Operators 3: Logic and Increment Operators

PUZZLES
UTPUT:
1 {Operators 3.1}
1 {Operators 3.2)
2 {Operators 3.3)
0
3 {Operators 3.4)
1]
? {Operators 3.3)
erivations begin on page 83.

What does the following program print?

#define PRINT(int) printf{"int

main(}

{

Operators 4: Bitwise Operators

int x, ¥, z;

x = 03; y = 02; 2 = 01;

PRINT(
FRINT(
PRINT(
PRINT({

x = 13
PRINT{
PRINT({
PRINT(

LI T]

y
!

X

X <<= 33

Yy <<= 3;

y »>»= 3

y & 2)

)
]
)
]
-~

L ¥ && 2z),

PRINT(x);
PRINT(y);
PRINT(v};

= Xd\n",int)

{Operators 4.1}
{Operators 4.2)
{Operators 4.3)
{Operators 4.4)

(Operators 4.5}
{Operators 4.6)
{Operators 4.7)
{Operators 4.8)
{Operators 4.9)

{Operators 4.10)

PUZZLES ¢

Operators 4: Bitwise Operators ‘ Operators 5: Relational and Conditional Operators

OUTPUT: What does the following program print?
x{y&z =3 {Operators 4.1) £ #define PRINT(int) printf{"int = Xd\n",int}
x!y&~2z =3 {Operators 4.2} E
x " y8& 2z = {Operators 4.3) ¥ main()
x &y &&kz =1 {Operators 4.4) 3 {
fx i x =1 {Operators 4.5) E int x=1, y=1, z=1;
cx i x = -1 {Operators 4.6) :
x "~ x =0 {Operators 4.7) X 4= y += 2]
x =8 {Operators 4.8) PRINT{ X < ¥ 2 ¥ : x)3 {Operators 5.1)
¥y = -8 {Operators 4.9)
y =2 {Operators 4.10) PRINT(X < ¥ ? X ++ 1 ¥ ++ J;
PRINT(x); PRINT(y)}; {Operators 5.2)
PRINT(2z += X < ¥y P X ++ I ¥ ++ };
Derivations begin on page 86. PRINT(y); PRINT(z); {Operators 5.3)
{ x=3; yez=d;
PRINT((2 >= y >= x} 2 1 : 0)3 (Operators 5.4)
PRINT(2z >= y && ¥ >» x)} {Operators 5.5)

Operators 5: Relational and Conditional Operators Operators 6: Operator Precedence and Evaluation

OUTPUT: What does the following program print?
x<y?y:x =3 (Operators 3.1) ' #define PRINT3(xX,y,z) printf(“xsXd\ty=Xd\tzsXd\n",x,y,z)
X <Y ?T X 1Y 4+ = 2 (Operators 5.2}
x = 3 main()
y =3 {
Z 4= X <« ¥ 7 X ¢+ I ¥y ++ = 4 {Operators 5.3) int x, ¥y, z;
y = 4
z = 4 X =y sz = 1;
(2 »= y>=x) 1 : 0 =0 {Operators 5.4) ++x §1 ++y &6 ++2; PRINT3(x,¥y,z); (Operators 6.1)
z »= y L6 ¥y >»= x = 1 {Operators 5.5)

X = ¥y = Z = 1;
++x &5 ++y !} ++2; PRINT3(X,¥,Z); {Operators 6.2}
Derivations begin on page 91.
X =y = I = 1;
++x LE ++y && ++2Z; PRINT3(x,¥,z)}; {Operators 6.3}

X =y =z = -13
+4x B6 ++y |} +42; PRINT3(x,y,z)3 (Operators 6.4}

X =y =2 = -1
+4x |1 ++y &6 ++2z2; PRINTI{(x,¥y,Z); (Operators 6.5)
X =y a2z = -1;
++¢x && ++y && ++2; PRINT3{x,¥,Z); {Operators 6.6)

OUTPUT:

xw2
xm2

x=0
x=0
x=0

Derivations begin on page 94,

Operators 6: Operator Precedence

y=1

y=2
y=-1
y=0

y=-1

zu=
z=1
z=2
z=0
zm-1
za-

{Operators 6.1)
{Operators 6.2)
{Operators 6.3)
{Operators 6.4)
{Operators 6.5}
{Operators 6.6)

d Evaluation

1. Character, String, and Integer Types
2. Integral and Floating Point Casts
3. More Casts

C has a comparatively small set of primitive types. The types may blindly be
mixed in cxpressions, the results governed by a simple hierarchy of
conversions. This hicrarchy is illustrated in Appendix 4.

For some of the puzzles in this section you will need to know the
corresponding integer value of some characters. The tables in Appendix 3
show the values for the characters in the ASCII set. A few of the puzzles yield
a different result on the VAX than on the PDP 11. For those puzzles, output
from both machines is given.

15

. JZZLES 17

Basic Types 1: Character, String, and Integer Types

What does the foilowing program print?

#include <«<stdio,.h>

#define PRINT{format,x) printf("x = %format\n",x)

int integer = 5;
char character = *5°;
char sstring = "5";

main()
{

PRINT(d,string}; PRINT(d,character); PRINT(d,integer);
PRINT(s,s8tring); PRINT{c,character); PRINT(c,integer=53);

PRINT(dA,(’'5'>5));

int sax = -8;
unsigned ux = -8;

PRINT(o,s8x}; PRINT(o,ux):
PRINT(o, Bx>»>3); PRINT(0, ux»>>3);
PRINT{d, sx>>3); PRINT(4, ux>>3)

{Basic Types 1.1)

{Basic Tvpes 1.2)

18 PUZZLI

Basic Types 1: Character, String, and Integer Types

OUTPUT:

string

an address

(Basic Types 1.1)

character = 53
integer = 5

string

character = 5

integer=53

= 5

{ ’5’»5 } = 1

sx = 177170

{Basic Types 1.2-PDFP 11)

ax = 177770

sx>>3
ux>>3
Bx>»>3
ux>>3

sx = 37777777770

177777 or 012771
17777

-1 or 8191

B191

{Basic Types 1.2-VAX)

ux = 37777777770

gx»>»3 = 37777777777 or 0377777177177
ux>>3 = 3777777777
sx>>3 = -1 or 536870911
ux»>>»3 = 536870911
Derivations begin on page 97.

o

PUZZLE:

Basic Types 2: Integer and Floating Point Casts

What does the following program print?

#include «<gtdioc.h>»

#define PR{x) printf("x = %.8g\t",{double)x)}
#define HL putchar(’n’)}
#define PRINT4(x1,x2,x3,x4}

main()

{
double 4;
float f;
iong 1;
int i;

£ =xd = 100/3; PRINP4(i,1,f,d);
l=3ji= 100/35 PRINT4(i,1,f,4);
£ = @ = 100/3,; PRINT4(i,1,f,d);
£=1=1i= (double)100/3;
PRINT4(i,1,f,d};

[S - T
n

= orh
[}

i=1=fz2d= (double)(100000/3};
PRINT4(i,1,£,d4);

4 =f=1=31i = 100000/3; PRINT4(i,1,£,4};

PR{x1); PR{x2); PR{x3}; PR(x4)

{Basic Types .4
{Basic Types 2.7
{Basic Types 2.3

(Basic Types 2.4

{Basic Types 1.5

{Basic Types 7 ¢

e

20 PUZZLES % —_—
:
Basic Types 2: Integer and Floating Point Casts t Basic Types 3: More Casts
|2
OUTPUT: What does the following program print?
i'.
1233 1«33 £=33 d=33 (Basic Types 2.1) i #include <stdio.h>
{ =33 1 =33 f =233 d= a3 {Basic Types 2.2) ¢
i =33 1=233 £ = 33.333332 4 = 33.333333 {Basic Types 2.3) | #define PR(xX) printf("x = %g\t”,(double)(x})
4 =33 1=233 £ =233 4a=33 {Basic Types 2.4) #define NL putchar{’\n’)
i » overflow 1 = 33333 £ = 33333 4 = 33333 (Basic Types 2.5-PDP 11} | #define PRINT1(x1) PR(x1); NL
i = overflow 1 = -32203 £ = -32203 4 = ~32203 (Basic Types 2.6-PDP 11} E #define PRINT2{x1,x2) PR{x1); PRINT1(x2}
4 = 33333 1 = 33333 £ = 33333 4 = 33333 (Basic Types 2.5-VAX) } main()
4 = 33333 1 = 33333 £ = 33333 4 = 33333 {Basic Types 2.6-VAX) § {
:] double d=3.2, x:
int 132, ¥
Derivations begin on page 99. x = (y=4/i)%2; PRINT2(x,y); (Basic Types
¥ Yy = (x=d/i)#2; PRINT2(x,y); {Basic Types
H ¥y =d s (x=2.5/d); PRINT1(y); (Basic Types

x =d « (y = ({(int}2.9+1.1)/d); PRINT2(x,y); (Basic Types

TH P TEm .

TRETYERCR T o

22 PUZZLES

Basic Types 3: More Casts

OUTPUT:
x = 2 y =1
1*106 yl3
y =2
x =0 y=0

Derivations begin on page 103.

(Basic Types 3.1)
(Basic Types 3.2}
(Basic Types 3.3}
{Basic Types 3.4)

Included Files

Each of the remaining programs in this book begins with the preprocessor statement
#include "defs.h"

When the programs are compiled, the preprocessor replaces this line with the contents of the
fic defs.h, making the definitions in defs.h availablc for usc. Here is a listing of
defs.h:

#include <stdioc.h>

#define PR(format,value) printf(“"value = Xformat\t",(value))
#define NL putchar(’\n’}

#define PRINT1(£,x1) PR(f,x?), NL

#define PRINT2(f,xt,x2) PR{f,x1), PRINTI1(f,x2}

#define PRINT3(€,x1,x2,x3) PR(f,x1}, PRINT2(f,x2,x3)
#define PRINT4(f,x1,x2,x3,x4) PR(f,x1), PRINT3(f,x2,x3,x4)

defs.h begins with an include statement of its own, calling for the insertion of the file
stdio.h, as required by the standard C library. The rest of defs.h comprises macros for

peinting. As an example, to print 5 as a decimal number, the PRINT1 macro could be called
by the expression '

PRINT1(4,5)
which expands to
PR(d4,5), NL
which further expands to
printf("S = Xa\t",(S)}, putchar(" \n’}.

The PRINT macros point out a feature of the preprocessor that often causes confusion. A
macro name that appears inside a string (i.c., enclosed within double quotes) will not be
axpanded. However, argument names within the body of a macro will be replaced wherever
they arc found, even inside strings. Notice that the macro PR takes advantage of the latter

property. Sce the Preprocessor Section, beginning on page 69, for 2 more detailed description
of macro subsiitution.

23

Control Flow

if Statement
while and for Statements

Statement Nesting

o po=

switch, break, and continue Statements

C, as most programming ianguages, has control constructs for conditional
selection and Jooping. To work the puzzles in this section, you will need to
know how to determine the extent of cach construct. In a well-formatted
program, extent is indicated by indentation. Reading a poorly-formatted
program is difficult and esvor prone; the following puzzles should convince you.

25

Control Flow 1: if Statement

What does the following program print?

#include “defs.h"

main()
{
int X, }'81. z3

if(yt=0) x=5;
PRINT1(d,x);

if{ y==0) x=3;
elge x=5;
PRINT1(d,x);

x=%;

if(y<0) if(y»>0) x=3;
elge x=5;

PRINT1(d,x);

if(z=y<0 } x=3;
else if(y==0 } xa5;
else x=7;
PRINTZ2(d,x,z};

if(z=(y=z=0)) x=5; x=3;
PRINT2(d,x,z});

if(x=2=y }; x=3;
PRINT2{d,x,z);

{Controt Fiow 1.1)

{Control Flow {.2)

(Control Flow 1.3

{Control Flow 1.4)

{Conirol Flow 1.5}

{Control Flow 1.6)

PLUZZLI

7

28 PUZZLES

Control Flow 1: if Statement Control Flow 2: while and for Statements

OUTPUT: : What does the following program print?

{Control Flow 1.1} #include "defs.h"
{Control Flow 1.2)
{Consrol Flow 1.3) main()
z =0 (Control Flow 1.4} {
z =0 {Control Fiow 1.5) int x, ¥, 2}
z = 1 {Control Flow 1.6)

H M OH K MM
| T |
W W = = o,

x=y=0;
while{ y<10) ++4y; % += y;
PRINTZ{d,x,¥};

Derivations begin on page 105,
xwy=0;
while(y<10 } x +2 ++y;
PRINTZ(d,x,y);)

¥=1;
while(y<10) {
X = y+4; Z = ++y;
}
PRINT3{d,x,y,2};

for(y=1; y<10; ye¢+) xay;
PRINT2(Q,x,¥):

for{ y=1; (x=y)<10; y++) ;
PRINTZ{4,x,y);

for(x=0,y=1000; y>1; x++,y/=10)
PRINTZ2(d4d,x,¥y);

{Control Flow 2.1)

{Control Flow 2.2}

{Control Flow 2.3)

{Control Flow 2.4)

{Control Flow 2.5)

{Control Flow 2.6)

30 PUZILES

Control Flow 2: while and for Statements

OUTPUT.

2= 10 y = 0

x = 55 y = 10

x = 9 y =11 z = 11

x =9 y = 10

x = 10 y = 10

x =0 y = 1000

x = 1 y = 106

x = 2 y = 10
Derivations begin on page 108.

(Control Flow 2.1)
{Control Flow 2.2)
{Conirol Flow 2.3)
(Control Flow 2.4)
{Control Flow 2.5)
{Control Flow 2.6)

Control Flow 3: Statement Nesting

What does the following program print?

#include "defs.h*

#define ENUF 3

#define EOS ’\Q’

#define NEXT{i) inputlies+]
#define FALSE ¢

#define TRUE 1

char inputl{)="PI=3.14159, approximately”;

main()
{
char «¢;
int done, high, i, in, low;

i=low=in=high=0;
while{ ¢=NEXT{i) != EOS }
1€(c<’0’ } lowe+;
else if(¢>°9’) highe+;
else in++;
PRINT3(4,low,in high);

i=low=in=xhigh=0; done=FALSE;
while{ (c=NEXT{i))1=EO0S && Idone)
1£(¢<’0’ } lows++;
elge if(¢>*9’) high++;
else in++;
if{ low>=ENUF !! high>=ENUF !! in>=ENUF)
done = TRUE;

- --ZLES 3i

(Control Flow 3.1)

PRINT3(d,low,in high); {Control Flow 3.2)

i=lowzinszhigh=0; done=PALSE;

while((c=NEXT(i))1=EOS && |done)
if(c<’0’) done = {++low==ENUPF);
else if(©>’9’) done = {(++high==ENUF);
elge done = (++in==ENUFP};

PRINT3(d,low,in,high); (Control Flow 3.3)

32 PUZZILES

OUTPUT:

low = 25
low = 3
low = 0

in
in
in

Control Flow 3: Statement Nesting

= 0 high = 0 {Control Flow 1.1)
= 6 high = 16 {Control Flow 3.2)
= 0 high = 3 {Control Flow 3.3)

Derivations begin on page 112.

LZLES 33

Conirol Flow 4: switch, break, and continue Statements

What does the following program print?

#include “defs.h"”
char input[] = "SSSWILTECHIN1\11W\1WALLMP1";

nain{)
{

int i, ¢3

for(i=2; {(c=inputlil)I="\0"; i++) {
switchie) {

case ‘a’: putchar(’i’}; continue;

case “1’: break;

case 1: while((c=sinput(++i])i=*\1" && cl!=°\0") ;

cagse 9: putchar{’s’};
case 'E’: case ‘L’: continue;
default: putchar{c¢c); continue;
}
putchar{” 7}

}

putchar{’\n’);

{Control Flow 4.1}

34 PUZZLES

Control Flow 4: switch, break, and continue Statements

OuUTPUT:

SWITCH SWAMP

Derivation begins on page 114,

{Control Flow 4.1)

Programming Style

1. Choose the Right Condition
2. Choose the Right Construct

Much has been written about programming style, about which constructs 1o
avoid and which to imitate. A cursory conclusion from the scemingly diverse
advice is that good style is largely a matter of personal taste. A more reasoned
conclusion is that good style in programming, as clsewhere, is a matter of good
jdgement. And while there are many good style guidelines, there are few
always appropriate, always applicable style rules.

With this in mind, the following puzzles illustrate a few common siyle
blunders. The solutions given are not so much answers, as in other sections,
but rather alternatives, If there is an overall key to good style, it is a
recognition of the final two steps in writing a readable program:

o Establish a clear statement of the idea to be coded.
o Develop the structure of the code from the structure of the idea statement.

PUZZLES

Programming Style 1: Choose the Right Condition

Improve the following program fragments through reorganization,

while

do {

{ay {
if(BR} continue;

C;

if(JA) continue;
elee E;
C;

} while(a};

if(a)

else

while(

if(B)
ifiC}) D;
else;
else;

if{B}
if{C) E;
else P;
else;

return(OTHER);

{c=getchar())!=’'\n’
if(c==’ ’) gontinue;
if(c==°\t’) continue;

if(¢<’0’) return{OTHER);
if{ c«='9’) return(DIGIT);
if{ c<’a’) return(OTHER);
if(c<=’z2’) return{ALPHA);

{Programming Style 1.1)

{Programming Style 1.2)

{Programming Style 1.3)

3

Derivations begin on page 119,

Storage Classes

Blocks
Functions

More¢ Functions
Files

Eal O

Each variable in C possesses two fundamental properties, type and storage class.
Type has been covered in an earlier section.

Storage class determines the scope and lifetime for a variable, scope being that

. part of a program in which a variable is known and lifetime being that portion

of an execution during which a variable has a value. The boundaries of scope
and lifetime are blocks, functions, and files.

a4

PUZZLco 39
Programming Style 2: Choose the Right Construct

Improve the following program fragments through reorganization.
fvations be, H7.
Denivations begin on page donesis0;
while{ 1i<MAXI && idone) {
if{ (x/22)>1) { 1++; continue; }
done++

} {Programming Siyle 2.1)

if(a) { B; return; }
if(c) { p; return; }
if{E) { P; return; }
G; return;

} {Programming Style 2.2}

plusflgezeroflg=negflg=0;

if(a>0) ++plusflg;

if(a==0) ++zeroflq;

else if(!plusflg } ++negflyg; {Programming Style 2.3)

i=0;

while{{c=getchar())1=ECOF){
if(clz’\n’&ect='\t’){ali++)=c;continue;}

if(e=z’\n’}break;

if(c=a’\t’)c=’ ’;

glivsl=c;} {Programming Style 2.4}

if(xi=0)
if(>k) y=3j/x;
else y=k/x;
else
if{ j>k) y=j/NEARZERO;
elge y=X/NEARZERO; { Programming Style 2.5)

PUZZLES 43

Storage Classes 1: Blocks

What does the following program print?

#include "defs.h"
int i=0;

main(}
{
auto int i=1;
PRINT1(d4,i);
{
int i=2;
PRINT1(d,1i);
{
i += 1;
PRINT1(4,i);
}
PRINTI{d,i};
}
PRINT1(d,1i}); {Storage Classes 1.1)

44 PUZZLE.

Storage Classes 1: Blocks

OUTPUT:

{Storage Classes 1.1)

[T TRV U YRV Y
]
- W N

Derivations begin on page 123.

Storage Classes 2: Functions

What does the following program print?

#include "defs.h"

#define LOW O
#define HIGH 5
#define CHANGE 2

int i=LoW;

main{)
{
auto int i=HIGH;
reset{ i/2)}; PRINT1(d,i);
reset{ i=i/2 }; PRINT1{d,i):
i = reset{ i/2); PRINTI{d,i);

workover(i); PRINT1(d,i); {Storage Classes 2.1)

workover(i)

int ij;

{
1= (iXd) « ((i=1)/7(2»1i) + 4);
PRINT1{d,i);
return(i);

int reset(i)

int i;

{
i = i<=CHANGE ? HIGH : LOW;
return{i};

PUZZLES

46 PUZZLES

Storage Classes 2: Functions

OUTPUT:

I T T
n
m o o Now!m

Derivations begin on page 124.

{Storage Classes 2.1}

Storage Classes 3: More Functions

What does the following program print?

#include "defs.h"
‘int i=1;

main()

{

int

int
int

int
int

int
int

auto int i, j;

i = reget(};

for(j=1; 4<=3; H++) {
PRINT2(d,1i,3);
PRINTI{d,next{l)};
PRINTt{d,lasti(i)}
PRINT1{d,new(i+j)};

resat()

return{i);

next(j)
3

return{ J=i++)3

last(j)
i;

static int i=10;
return{ j=i--);

new(i)
i;

auto int j=10;
return(i=j+=i };

{Storage Classes 3.1)

'UZZLES 4

48 PUZILES

Storage Classes 3. More Functions

OUTPUT:

nexti{i) = 1
last(i) = 10
new{i+j) = 12
1= =2
next(i} = 2

last(i} = 9
new{i+j)} = 13
1.1 jls

next{i) = 3
last(i) = 8
new(i+j) = 14

Derivations begin on page 125

Storage Classes 4: Files

What does the following program print?

#include "defs.h"”
int i=1;

main(}
{

auto int i, j;

i = reset{);

for{ j=1; j<=3; j++) {
PRINT2{d,i,3);
PRINT1(d,next{i});
PRINT1{d,last({i});
PRINT1{d,new(i+j)};

In another file
static int i=10;

int next(}
{

return{ i+=1);

}

int laat()
i

return{ i-=%);

}

int new(i}

int i;

{
static int j=5;
return(i=zj+=i });

In yet another file
extern int i;

reget{)
{

return(i);

JZZLES 49

{Storage Classes 4.1)

50 PUZZLES

OUTPUT:

Storage Classes 4: Files

$ 21 3 =1 (Sorage Classes 4.I)

next(i) = 11
lagt(i) = 10
new(i+j} = 7
i =1 j =2
next(i) = 11
lagt(i) = 10
new(i+j} = 10
i= 1 i=3
next(i) = 11
last(i) = 10
new(i+j) = 14

Derivations begin on page 127.

« ointers and Arrays

Simple Pointer and Array
Array of Pointers

Multidimensional Array

A won

Pointer Stew

Pointers have long been abused by programmers and thus maligned in style
guides. Specifically, pointers are criticized since, by their nature, it is
impossible to identify fully a pointer's referent without backing up to where the
pointer was last defined: this adds complexity to a program and makes
verification much more difficult.

The C language, rather than restricting the use of pointers, often makes them
the natural choice for use. As the following puzzles will illustrate, pointers and
armays are very closely related. For any application using array indexing, a
pointer version also exists. The warnings against the dangers of pointer misuse
apply as strongly to C as to any language.

21

PUZZLES
Pointers and Arrays 1: Simple Pointer and Array

What does the following program print?

#include “defs.h"

int all={0,1,2,3,4};

main()
{
int i, «p;
for(i=0; i<=4; i«+) PR(d,alil): {Pointers and Arrays 1.1)
NL;
for(p= 5al0]l; p<=kal4l; p++)
PR(d,»p); {Pointers and Arrays 1.2}
NL; KL;

for{ p= Lal0),i=1; 1<=5; i++)

PR(A,plil); (Pointers and Arrays 1.3}
NL;
for(p=a,i=0; pti<=a+d; pes ist+)

PR{d,«(p+i}); {Pointers and Arrays 1.4)
NL; NL;
for(p=a+4; p>=a; p--) PR(d,sp); {Pointers and Arrays 1.5}
NL;
for{ p=a+4,i=0; i<=4; i++) PR{A,pl-il}; (Pointers and Arrays 1.6)
NL;
for(p=a+4; pr=a; p-- } PR{(d,alp-al); {Pointers and Arrays 1.7)

NL;

i4 PUZZLES 1 LES S5

Pointers and Arrays 1: Simple Pointer and Array Pointers and Arrays 2: Array of Pointers
DUTPUT: What does the following program print?
alil = 0 alil = 1 afi]l = 2 afi]l = 3 alil = 4 #include "defs.h"
(Pointers and Arrays 1.1)
ap = 0 «p = 1 *p = 2 «p = 3 ap = 4 int all={0,1,2,3,4};
{Pointers and Arrays 1.2) int spll={a,a+1,a+2,a+3,a+4};
int «spp=p; (Pointers and Arrays 2.1}
plil = 1 plil = 2 plil = 3 plil = & plil = ?)
{Pointers and Arrays 1.3) main()
alpri) = 0 w{p+l) = 2 «(p+i} = 4 { Pointers and Arrays 1.4) {
PRINT2(d,a,#a);
“p = 4 sp = 3 ap = 2 sp = 1 «p = 0 PRINT3{d,p,«p,s+p);
{Pointers and Arrays 1.5) PRINT3(d,pp,*pPpP,**Pp); {Pointers and Arrays 2.2)
pl-il = 4 pl-i) = 3 pl-i)l = 2z pl-il = 1 pl-il = 0 KL;
(Pointers and Arrays 1.6}
alp-a) = 4 alp-a)l = 3 alp-al = 2 alp-al = 1 alp-al =0 pPp++; PRINT3(4,pp-p,+pp-a,*«pp);
{Pointers and Arrays 1.7) spp++; PRINT3(d,pp-p,+pp-a,s+ppl;
#++pp; PRINT3(d,pp-p,*pp-a,#»pp);
+++pp; PRINTI(d,pp-p,+pp-a,ssppl; {Pointers and Arrays 2.3)
NL;

Derivations begin on page 129.

PP=P;

##pp++; PRINT3I(d,pp-p,*pp~a,w#pp);

#+++pp; PRINT3(d,pp-p,+ppP-a,#spp);

++#4pp; PRINTI(4,pp-p,spp-a,x«ppl; {Pointers and Arrays 2.4)

,
56 PUZZLES ruZZLES §

Pointers and Arrays 2: Array of Pointers Pointers and Arrays 3: Multidimensional Array

ouTPUT: What docs the following program print?
ddress of a wa = 0 (Pointers and Arrays 2.2)

a=a

p = address of p ap = addressof a asaxp = 0

pp = addressof p »pp = address of a w»#pp = 0

#include “defs.h"

int al3]{3] = {
{1, 2, 31},

pp-~p = 1 spp-a = 1 #app = 1 {Pointers and Arrays 2.3) (4,5, 61,
pp-p = 2 #pp-a = 2 #app = 2 . {7, 8, 91}
- =
il;:i : : :::'-: : : ::z: = 4 int spal3] = {
alol, al1], af2]
pp-p = 1 spp-a = 1 4#«pp = 1 {Pointers and Arrays 2.4) };
pP-p = 1 spp-a = 2 axpp = 2 int «p = al0};

{Pointers and Arrays 3.1}
= 3
pp-p = 1 «pp-a = 2 #&pp

main()}
{

int i;
Derivations begin on page 132.
for{ i=0; i<3; i++)

PRINT3(d, alill2-i1l, #alil, s(e(a+i)+i))i
NL; {Pointers and Arrays 3.2)
for{ i=0; i«3; i++)

PRINT2(d, spalil, pli]); {Pointers and Arrays 3.3)

58 PUZZLE . ZLES 59

Pointers and Arrays 3: Multidimensional Array Pointers and Arrays 4: Pointer Stew
OUTPUT: What does the following program print?
alili2-i]1 = 3 «alil = 1 ws(w(asi)+i) = 1 (Pointers and Arrays 3.) #include "defs.h"”
alill2-1]1 = 5 walil = 4 ={=(a+i)+i} =5
afill2-i) = 7 salil = 7 «(s(a+id+i) =9 char scl] = {
*ENTER",
spalil = 1 plil = 1 {Pointers and Arrays 3.3| "NEW",
spalil = 4 plil = 2 "POINT",
ng[i] = 7 p[i] = 3 *"FIRST"
b
char s#cpl]) = { c+3, c+2, c+¢1, ¢ };
char ###*Cpp = CPp; Pointers and Arrays 4.1
Derivations begin on page 136. { ys 4.1)
main(}

{
printf{"%Xs", sx++cpp);
printf("%s ™, s--~s+scpp+3d);
printf(“"Xs", scppl-2]+3)3
printf("Xs\n", cppl-13[-1J1¢1)3 {Pointers and Arrays 4.2}

60 PUZZLES wtructures
Pointers and Arrays 4: Pointer Stew
1. Simple Structure, Nested Structure
2. Array of Structures
OUTPUT: 3. Array of Pointers to Structures
POINTER STEW {Pointers and Arrays 4.1)
Derivation begins on page 138.

A structure, that is the C data type struct, is a fundamental building block
. for data structures. It provides a convenient way to package dissimilar but
related data items.

61

Structures 1: Simple Structure, Nested Structure

What does the following program print?

#include "defs.h"

main()}
{
static struct 81 {
char cl4]), «s;
} 81 = { "abe", "def" };

static struct s2 {
char scp;
gtruct S1 ss81;

PUZZLES

} 82 = { "ghi*, { "3$k1", "mno" P {Structures 1.1)
PRINT2(¢c, 81.cl0]), 281.8); {Structures 1.2)
PRINT2(s, #1.c, 81.8)} (Structures 1.3)
PRINT2(ms, 82.cp, s82.881.8}; (Structures 1.4)

FPRINT2{8, ++82.0p, ++82,.581.58); {Structures 1.5}

64 PUZILE

Structures 1: Simple Structure, Nested Structure

OUTPUT:
81.ci0] = a «sl1.8 = 4
g81.c = abc 81.8 = def
s2.cp = ghi 82.881.8 * mno
++82.cp = hi- ++82.881.8 = no

Derivations begin on page 141,

{Structures 1.2)
(Structures 1.3}
{Structures 1.4)
{Structures 1.3)

JZZLES 65

Structures 2: Array of Structures

What does the following program print?

#include "defs.h"

struct 51 {

char »s;

int i

gtruct §1 ¢s1p;
b

main()
{
static struct 51 al] = {
{ "abca®, 1, a+1 1},
{ "efgh", 2, a+2 },
{ *i3%x1*, 3, a }

b;

struct S1 =*p = a; {Structures 2.1)
int i;

PRINT3(s, al0).s, p-»s, al2).g1p~->58); {Structures 2.2)

for(i=0; i«<2; di++) {
PR{d, --alil.i);
PR{c, ++ali).sl3]); {Structures 2.3}
NL;

PRINT3(a, ++(p-»s}, al(++p)-»il.s, al--(p-»>s1p->i)).s};
{Structures 2.4)

66 PUZILES

OUTPUT:

aldol.s = abecd

~~alil.i = 0
~--alil.i = 1
++{p->8) = bce

Structures 2: Array of Structures

al2).s1p~>8 = abed
{(Structures 2.2)
{Structures 2.3)

p->8 = abecd

++ali). s3] = e
evalil.sl3] = i
al(++p)->il.s = efgi al--(p->slp->i}l.s = ijkl

{Structures 2.4}

Derivations begin on page 143.

P

Structures 3: Array of Pointers to Structures

What does the following program print?

#include "defs.h"

struct 81 {

char sg;

struct §1 =*81p3
Y

main() '
{
static struct S1 all = {
{ "abecd®, a+1 },
{ "eggh", a+2 },
{ "ijkx1*, a }

struct 81 #pl3];
int i

for(i=0; i<3; f++ } pli]l = alil.atp;
PRINT3(s, pl0)->g, (#p)->3, (#sp).s);

gwap(+p,a);
PRINT3(s, plO0]l->8, (sp)->s, {ep)->81p->8);

swap(plol, plol-»g1p);
PRINT3(g, pl0l-»a, {(#++pl0)).g, ++{ess(up)->mip).8);

LES 67

{Structures 3.1)

(Structures 3.2)

{Structures 3.3)

{Structures 3.4}

}

svapip1,p2)
struct §1 #p1, =p2:
{

char stemp;

temp = pl->8}
pl->8 = p2->8;
p2->s = temp;

68 PUZZL)

Structures 3: Array of Pointers to Structures

OUTPUT:

plCl->3 = efgh (sp}=->8 = efgh (w*p).s = efgh {Structures 3.2)
pl0l->g = abeca (#p)->8 = abed (=pl)->51p->8 = 13kl (Structures 3.3}

>g = [01).8 = abed ++(s++(sp)->81p).5 = jkl
pl0l->g ijkl (#++p (Structures 3.4}

Derivations begin on page 152.

Preprocessor

1. The Preprocessor Doesn’t Know C
2. Caution Pays

Though in a strict sense the preprocessor is not part of the C language, fow C
programs would compile without it. Its two most importam1 functions are
macro substitution and file inclusios.

This section concentrates on macro substitution. When used judiciously,
macros are a versatile tool that can enhance the readability and efficiency of a
program. When used unwisely, macros, like other features in C, can lead to
insidious bugs. To solve the puzzies in this section, follow the rules for
cxpanding macros very carefuily.

69

PUZZLES ..

Preprocessor 1: The Preprocessor Doesn’t Know C

What does the following program print?

#include <atdio.h>

#define PUDGE(X} k+3.14159

#define PR(a) printf{"a= Xd\t",{int)(a))
#define PRINT{a)} PR(a); putchar{’\n’}
#define PRINT2{a,b) PR{a); PRINT(Db)
#define PRINT3{a,b,c) PR{a); PRINTZ2(b,c)
#define MAX{a,b) {(a<bh ? b : a)

main()
{

int x=2;
PRINT(x«FUDGE(2) }; {Preprocessor 1.1)

int cel;
for(cel=0; cel«=100; cel+=50)
PRINT2{ cel, 9./S«cel+3d2); { Preprocessor 1.2)

int x=1, y=2;
PRINT3{ MAX(x++,¥),x,¥ };
PRINT3{ MAX(x++,¥),X,¥ }i {Preprocessor 1.3)

72 PUZZLES P LES D

Preprocessor 1: The Preprocessor Doesn’t Know C Preprocessor 2: Caution Pays

What does the following program print?

QUTPUT:
#include <stdio.h»
x#PUDGE(2) = 7 { Preprocessor LIt #efine NEG(a)-a
cels 0 cels S0 celr 100 9./Sscel+32 = 302 { Preprocessor 1.3 #define weeksa(mins) (days(mine)}/7)
MAX(x++,y)= 2 xs 2 y = 2 { Preprocessor 1.3} fefine days(mina) (hours(mins)/24)
MAX (x++,y)= 3 xz 4 y = 2 #define hours(mins) (ming/60)

#define mins(secs) (secs/60)
fdefine TAB(c,i.oi,t)l if(cma’ N’)N
for{t=a8-(i-oi-1)X8,0i=i; t; t--}\

Derivations begin on page 158. putchar(’ ’)

#define PR{a) printf(®"a= Xd\t", {int)(a))
#define PRINT(a) FR(a); putchar{’\n’)
main(}
{
{
int x=1;
PRINT(-NEG(x)); {Preprocessor 2.1)

PRINT(weeks{10080));
PRINT(days(mins(86400))); {Preprocessor 2.2}

static char inputl) = “\twhich\tif?";
char c;
int i, o0ld4i, temp;

for{ oldix -1,i=0; (ceinput(il)iI=’\0’; ie¢s)
if(<’ *) TAB(c,i,oldi,temp};
elge putchar(c);
putchar{’\n”’); { Preprocessor 2.3}

74 PUZZLES

Preprocessor 2: Caution Pays

OUTPUT:
~NEG(x)= 0 {Preprocessor 2.1)
weeks(10080) = 1 {Preprocessor 2.2}
days({mins(86400)) = 1
¢leven spaces {Preprocessor 2.3)
Derivations begin on page 161.

SOLUTIONS

Operators 1.1

X=z=-3+425-6

x={-3)+445-6

x=({=3) + {4a5) « &
x=({(-3)+(4%5)) -6

xz(((-3)+(4+5))-6)
(x=({(~3)+(425}}-86))

{x=((-3+(4+5))}-6}

(x={(-3+20})-86)
(x={17-6))
[x=11}

11, an integer

BASIC ARITHMETIC OPERATORS ..

Begin by reading the precedence table in Appendix 1
from high to Jow,

The highest level operator in the expression is the
unary -, We'll use parentheses 10 indicate the order
of binding operands to operators.

Next highest in the expression is #.
Both + and - are at the same precedence level. The

order of binding thus depends on the associativity rule |

for that level. For + and -, associativity is left to
right. First the + is bound.

And then the -.

And finally, near the bottom of the precedence table,
is =. Now that we have completely identified the
operands for cach operator, we can cvaluate the
expression.

For this expression, cvaluation proceeds from the
inside out.

Replace cach subexpression by its resulting value,

The value of an assignment expression is the value of
the right-hand sid& cast in the type of the lefi-hand
side.

About printf. Printf is the formatted print routine that comes as part of the standard C
library. The first argument to printf is a format string. It describes how any remaining
arguments are to be printed. The character % begins a print specification for an argument.
In our program, %4 told printf£ to interpret and print the next argument as a decimal
number. We will sce other print specifications in later programs. Printf can also output
literal characters. In our program, we “‘printed” & newline character by giving its name

(\n) in the format string.

78 BASIC ARITHMETIC OPERATORS

Operators 1.2

x=3+4%5~-6
x=3+ (4%5) - 6
x=(3+(4%5)}) - 6_
x=((3+{4X5))-6)
{x=((3+(4%5)})~-6))

(x={(3+4}-6)
(xm(7-6})
{x=1)

1

Operators 1.3
x=-3+4%-6/5

xe(-3)+4%(-6)/5
s ((-3)24)%(-6)/5

x= (((-3)e4)%(-6))} /5
x= ((({-3)e4)%(-€))/5)
(x=(({{-3)24)%{-6)}/5))
(x=({(-3%4)%-6)/5))
(x={(-12%-6)/5))
(x=(0/5})

{x=0}

0

This expression is very similar to the previous one.
Following precedence

and associativity

leads to

this. (The modulo, %, operator Yyields the
remainder of dividing 4 by S.)

Again, evaluation is from the inside out.

This cxpression is a bit more complex than the
last, but rigorous adhercnce to preccdence and
associativity will untangle it.

«, X, and / are ali at the same precedence level,
and they associate from left to right.

Evaluating from the inside out.

Operators 1.4

x=(T+6)%5/2

x=(7+6)} %5 /2
x={{7+6)%5) £ 2

x={({{7+6)%X5)/2}

(x={({7+6)%5)/2))

(x=({13%5)72)}
{x=(3/2)}
{x=1)

1

BASIC ARITHMETIC OPERATORS 79

Of course we are not totally at the mescy of predefined
precedence. Parentheses can always be used to effect
or ¢clarify a meaning.

Subexpressions within pareatheses bind first.

Then, it is according to the precedence and associativity
rules as before.

Evaluating.

Integer arithmetic truncates any fractional par.

Abowt programming style. As mentioned in the Preface, the programs in this book are not
models to be copied. They were designed to make you think about the mechanics of how C
works. But the puzzles do contain messages about program style. If a comstruct always
forces you 1o consult a reference to find out how some detail is handled, then the construct
is cither not well writien or it should be accompanied by a comment that provides the

missing details.

The message from this first set of puzzles is to use parentheses in complex ¢xpressions to
help the reader associate operands with operators.

80 ASSIGNME.v1 OPERATORS ASSIGNMENT OPERATORS 81

Operators 2.1 Operators 2.2

initially 2=2 initially x= 10

xa=3+2 Again follow the precedence table. Xemy=z=4

xwe=m (3+42) As we saw earlier, the assignment operators have lower T umy={z=4} In this expression all the operators are assignments, hence
precedence than the arithmetic operators, (== is an assignment assaciativity determines the ordes of binding. Assignment
operator.) operalors associate from right to lefi.

(xe=(3+2)) x ez {y={z=4))

({x*=5) Evaluating. {xe={y=({2z=4)))

(x = Xa5) Expanding the assignment to its equivalent form, (xn=(y=g)} - Evaluating.

{x=10) ' ({xncd)

10 40

Operators 2.3

Abouwt define. This program begins with the line

#define PRINTX printf("%d\n",x}
initially y=4, z=4
Any line in a C program that begins with the character # is a statement to the €

preprocessor, One job done by the preprocessor is the substitution of one string by another. Xx=y==2
The define statement in this program tells the preprocessor to replace all instances of the x = (y==1) Often a source of confusion for programmers new to C is
string PRINTX with the string print£(*Xd\n" ,x}. the distinction between = (assignment) and == (lest for
equality). From the precedence table it can be seen that
== is bound before =.
{x=(y==z))

{(x={TRUE}}

(x=1) Relational and equality operators yield a result of TRUE, an
integer 1, or FALSE, an integer 0.

82 ASSIGNMENT OPERATORS

Operators 2.4

ipitially x=1, z=4
x==(y=2Z)

(xwa{y=2))

{xuni)
PALSE, or 0

higher

his expression the assignment has bet?n forced to
Wigher ;:ecedcnce than the test for equality through the

of parentheses.
Evaluating.

The value of the
value of x has not changed

operands), so PRINTX prints 1.

expression is 0. Note however tbat the
(== does not change its

have

LOGIC AND INCREMENT OPi.....TORS 83

~ Operators 3.1

initially x=2, y=1, z=0
x=exbbyliz '

x = (x8&y) 1] z

xm {((x8&y)iiz)
(x=({(x&8y)11z))

(x=({TRUESATRUE) | iz})

Bind operands to operators according to precedence,

Logical operators are evaluated from left to right.
An operand to a logical operater is FALSE if, it is
\ zero and TRUE if it is anything else.

The logical AND, &4, yiclds TRUE only when both
its operands arc TRUE, otherwis¢ PALSE.

{x={TRUEBI{z)})

{x=({TRUE! | whatever) Once one argument to the OR, |}, is known to be
TRUE we know the result of the § | willi be TRUE
regardless of the other operand. Hence there is no

need to evaluate the expression further.
{x=TRUE}
{x=1)
1

More abour define. The define statement that begins this program is a little fancier than
that in the previous program. Here, PRINT is the name of a macro with arguments, not just
a simple string. The preprocessor performs two levels of substitution on macros with
arguments: first the actual arguments are substituted for the formal arguments in the macro
body, and then the resuiting macro body is substituted for the macra call.

For example, in this program PRINT has one formal argument, int. PRINT(x) is a call
of PRINT with the actual argument x. Thus, cach occurrence of int in the macro body is
first replaced by x, and then the resulting string, print£{*%d\n",x}, is substituted for
the call, PRINT(x). Notice that the formal parameter int did not match the middle
letters in printf. This is because the formal arguments of a macro are identifiers; int
enly maiches the identifier int,

84 LOGIC A! NCREMENT OPERATORS

Operators 3.2

initially x=1, y=1, z=0

xil lysaz

x il (ly) &a 2

x il ({1y)a&z)
(xii{{1y)6bz))

{(TRUE! i ((1y)&&2z))

{ TRUE ! } whatever)
TRUE, or 1

Operators 3.3

initially x=1, y=1
Z=X ++ - 1

z= (x+¢+) =1

z=s ({xe+)-1)
{z=({x++)-1))
(z=(1-1})), and x=2

{z=0}
0

Binding operands to operators.

Evaluating from left to right.

Following precedence.

The ++ to the right of its operand is a post increment.
This means that x is incremented after its value is used
in the expression.

LOGIC AND INCREMENT O/ \TORS 85

Operators 3.4

initially x=2, y=1, 220
ZHE =X+t + +4+ Y

Z+x = (X++) + (++y) Unary operators associate from right 1o left,
thus ++ binds before unary -. (Actually, the
expression would not be legal if it were
arranged so that the -~ bound first since ++ and
-~ expect a reference to a variable (an Ivalue).
as their operand. x is an lvalue, but -x is not.)

Z ez («{X++}) + (++¥)

z2+o ({~{x++))+({++y))

(Zem({=(x++))+{++¥y)))

(z+={(~2)+2)}, and x=3, y=2 Evaluating from the inside out,
(z+=0)

{(z=0+0)

(z=0)

0

Operators 3.5

initially x=3, z=0
Z=X/ ++ X
ZaX/ (++X%)
za (x/(++x))

{z=({x/(++x)))

You may be tempted at this point to begin evaluating this expression as before, from
the inside out. First the value of x would be retricved and incremented to be divided
into the valuc of x. One guestion that might be asked is what value is retrieved from x
for the numerator, 3 or 47 That is, is the value for the numerator retricved before or
after the increment is stored? The C language does not specify when such a side
effect! actually occurs; that is left to the compiler writer. The message is to avoid
writing expressions that depend upon knowing when a side effect will accur.

t. A side effect is any change to the slate of a ﬂprogmm that occurs as a byproduct of executing a
statement. By far the most common side e

variables, such as with the increment eperalor as above or with an embedded assignment operator.

ecis in C relate 10 storing intermediate values in

86 BITWISE OPenATORS

Operators 4.1

initially x=03, y=02, z=01
xiy&e

(xi{ybz))
(xi(02801))
(xi0)

(0310)
03

Integer constants preceded by 0 (zero) are octal
values. Octal notation is particularly uscful when
working with the bitwise operators because it is
easy to translate octal numbers to binary. In this
problem, 01, 02, and 03 are equivalent to 1, 2,
and 3, so using octal is merely a cue to the reader
that the program will deal with the values of x, ¥,
and z as bit strings.

Following precedence.
The innermost expression is evaluated first.
In binary, 01=14, 02=10, 03=11

10
& 01

00

BITWISE OPERATORS 87

Operators 4.2

initially x=03, y=02, z=01
xly&-2
(xl({y&(-2)})

(xi(y&-01)} ~ complements each of the bits of its operand.
. Thus 0...01 becomes 1...10.

(x}(025-01)}
(03102) In binary,
v 0...010

-

Operators 4.3

initially x=03, y=02, 2201
x"yb&-~2

(x*(y&(~2))) This is the same as the previous problem except
that the exclusive or, “, has been substituted for

the inclusive or, 1.

(x"(02&-01))

{03°02)
1 In binary,
10
‘1%

—-———

01

88 BITWISE OPERATORS

Operators 4.4

initially x=03, y=02, z=01

x&ybiz
((x&y)&&z)
({03802)542}
(0264z)
(TRUELGLZ)

(TRUE&LLOQ 1)

{ TRUEALTRUE}
TRUE, or 1

Operators 4.5

initially x=01
tx!x
((1x)ix)

{{ ITRUE) i x}
(PALSEIO1)
(0101)

1

&L yields TRUE whencver both operands are

Operators 4.6

initially x=01
~xix
((~x)ix)
(~01101)
-1

Operators 4.7

initially x=01

-~

X X
(01701)
0

BITWISE OPERATORS 89

In binary,

1...110
P 0...001

- -

) 1...141, or -1

(The answer is the same for all values of x. Actually, it is -1
on a two's-complement machine, like the PDP-11. On a
onc's-complement machine 1. ..1 would be -0. For the few

cases in this book where it matters, two's-complement witl be
used.}

In binary,

(The answer is the same for all values of x.)

90 BITWISEO ATORS RELATIONAL AND CONDITIONAL OPL__. TORS 91

Qpevators 4.8 Operators 5.1

B initially x=01 initially x=3, y=2, z=1

; x <<= 3 X<yty:x

x = 01<<3 (x<y) ? {y) : (x} The conditional operator, aside from taking three

- s in binary, operands, is parsed like any other operator.

g 0000. .01 ({x<y)?{y):(x))

% _ :: -------- 3 (FALSE? (¥):(x))} First the condition is evaluated. Then either the

0...01000, whichis 8 :‘:et:lpart or the false part is evaluated, but not

E - » t '

: Each place shifted 10 the left is an effective multiplication by 2. - .

! ((x)) In this problem the valué of the condition is
FALSE, thus the value of the conditional
expression is the value of the false part,

Operators 4.9 {3)

3

initially y=-01

¥ <<= 3 Opera:ors 3.2

y=-01c<c3

ys= -8 In binary,

_ 1111, 14 initially x=3, y=2, z=1
<< 3 X< PX 4+ y¥ ++
1...11000, or -8 ((X<y)P{xe+is{y++})
(PALSE? (x++):(y++)) First evaluate the condition.
({y++)} The condition is PALSE so the fal i
s¢ part is
rators 4.10 evaluated.

(2’ ’ al'ld yl3

il y-08 2 (And since x++ was not evaluated, x remains 3)

¥ ar>= 3

y=-08>>3

It is tempting at this point (o assume that y = ~1. Unfortunately this is not always the
case, since the computer may not preserve the sign of a number when shifting. C dow
not guarantec that the shift will be arithmetically correct. In any case, there is a mad
clearer way to divide by 8, namely y=y/8,

92 RELAT AL AND CONDITIONAL OPERATORS
RELATIONAL AND CONDITIOl ~o OPERATOR

perators 5.3 Operators 5.5

initinlly x=3, y=3, z=1 initially x=3, yed, z=4
LR X <Y P X4+ 1 Y ++ zZ>=y&&yor=x
(zro{(xey)P(X++)i(y++)))

({zr=zy)&E(y>=x})
(g+a(PALSE? (x++):(y++)]})

L. {TRUE&E (y>=x)) Evaluating from left to right.
(z+=((y++)) The result of the conditional expression is (TRUESATH
the right-hand side of the assignment. &&TRUE)
(z+=(3)), and y=4 {TRUE)
(z=z+3) 1
{z=4)
4
Operators 5.4

initially x=3, y=4, z=4
(z>=y>ax)?1:0
(((z>=y)}>=x)?{1):(0})

{(TRUE>=x)?(1):{0}} The condition is evaluated from the inside
out.
((1t>=x)?{1)}:(0)}) The value of the innermost relation is

TRUE. It is compared {o the integer x.
While this is legal in C, it is really playing
footloose with the value TRUE being an
integer 1, and, as in this problem, it is
usually not what's wanted. (The next
puzzle shows the right way to compare
three values.)

(PALSE?(1):(0)}}
((0))
0

94 OPERATOR PRECEDENCE AND EVALUATION

QOperators 6.1

initially x=1, y=1, z=1

++X i)+ VBB ++ 2

({oex)di ({rey)Bhis+sr2))}))

(201 ((++y)88(++2))), and x=2
{ TRUE! | whatever)

Binding operands to operators.
Evaluating from left to right.

Since the left operand of the i1 is
PRUE, there is no need to evaluate
further. In fact, C guarantees that it
will not evaluate further. The rule is
that a logical expression is evaluated

from left to right until its truth value is
known. For this problem that means y

and z remain 1.
TRUE, or 1

Operators 6.2

initially x=1, y=1, z=1

++xbE++y il ¢+ 3z
{((e+x)BE{esy) ii{asz))

((TRUES&{++y))1 {++2)), and x=2
((2862)81(++2)}, and y=2
(TRUE!) {++2))

TRUE, of 1

Evaluating from left to right.

z is not affected.

About evaluation order and precedence. For most operators, the order of evaluation
determined by precedence. As can be seen from the puzzies in this section, there are 8 few
exceptions to this general rule:

o Pre- increment and decrement operators are always evaluated before their operand i
considered in an expression.

e Post- increment and decrement operators are always evaluated after their operasd &

considered.

OPERATOR PRECEDENCE AND EVALUATION 95

Operators 6.3

initially x=1, y=1, z=1

++ X && ++ Y A& ++ =
({{++x)LE{+sy) }BE{++z))
((2882)8&(++2)), and x=2, y=2
(TRUEB&&L (++2}))
(TRUEL&TRUE), and z=2

TRUE, or 1

. Operators 6.4

initially x=-1, y=-1, za-1

++ X8 ++ ¥ Il +r 2
(({rex)8&(++y))i (++2))
{{0&&(++¥))il (++42)), and x=0
{(FALSE&S&(++y))it (++2))
(FALSE! i {++2))

(PALSE! :(0)), and z=0
{PALSE! | FALSE)
PALSE, or 0

There is no need to evaluate ++y since
the left operand to & is FALSE. The
value of the ! operation is siill not
known, however,

CHARACTER, STRING, AND INTEGER TYPES 97

96 OPERATOR PRECEDENCE AND EVALUATION

Basic Types 1.1
Operators 6.5
. 1 gent PRINT{4,"5") %a format instructs print# to print the argument as a
initially x=-1, y=-1, = decimal number. "5" is a pointer to a character array
tex il srybher e (i-e., the address of the two character array * 57,
‘NOY)
({++x) 3 ({++y)6&{++2))) (d.'5°) d ta
PRINT(4,’S %4 ca the decimal value of the ¢ ‘57 t
(PALSE! | ((++y)8&(++2))), and x=0 3 printed.! mal valti of the character 757 to be
(PALSE!} (FALSE&S.(++2))), and y=0 PRINT(4,5) The integer S is printed in decimal.
{ PALSE! | FALSE) PRINT(s,"5") %s format instructs printf that the argument is a
FALSE, or 0 < pointer to a character array. Since *5" is a pointer to a
character array, the content of that array, 5, is printed.
PRINT(c,’5’) %c format instructs printe to translate the argument
ators 6.6 into the character its value represents. Since *S° is
Oper .

the encoded value for S, S is printed,

PRINT(c,53) As seen carlier, the decimal number 53 is the ASCI

_— code value for the character 5.
initially x=-1, y=-1, 2=-1

PRINT(A,(’5'>5)) One last time. ‘5° has the integer value 53 which is

++ X EE ++YRE v+ Z greater than the integer 5.

({({++X)GR({++y) JE8E(++2))

{ {PALSE&& (++y) J&&(++2)), and x=0
{PALSE&& (++Z]}

FALSE, or G

’ i cal expressions. As you have surely learncd by now, the evaluation ?I
:ﬁ;fe cgi::s;:mn bewt:icky in C :eeause the righi-band part o_f ’thc expression is
evaluated conditionally on the value of the lefi-hand part. .Actua]ly, condl}lonal evaluauonfls
a uscful property of the logical operators. The trouble arises when !.he nght—hs:lnd parlﬁo 8
logical expression contains a side effect; sometimes the SId? effect will occur an some u:ln?.
it won't. So, while in general it is good practice to use side cffects carefully, it is vital i

logical expressions.

i. The value given bere is that for the ASCTS character code (sce Appendix 3}. The ASCH code is but
one of several codes used by computers to represent characters. It will be used in this book for those
few cases where it maiters.

98 CHARACTER,ING, AND INTEGER TYPES

Basic Types 1.2

initially ax=-8, ux=-8
PRINT(o,82)

PRINT(o,ux)

PRINT(o,8x>>3)}

PRINT(o,ux>>3)

PRINT(d,sx>>3)

PRINT(d,ux>>3}

Basic Types 2.1

i=1l=f=d=100/3
{i= (1= {f= (d= (100/3))} }}}
(i= (1= (f= {(d=33) }})

%o instructs printf to print the argument as an octal
number.

The value -8 is a string of 1's and 0°s just as valid for
unsigned variables as for signed ones,

We have seen this problem earlier. With some {i= (1= (f=(double)33) }), and d=33
versions of C, right shifting of a signed integer causes
the sign bit to be copied into the vacated high order
bits, thus having the desirable property of preserving

sign. Beware—ihis is compiler dependert!
When right shifting an unsigned integer the high
order bits are always filled with 0's.

In decimal, right shifting a signed -8 three places
yields the expected - 1 if sign is prescrved, 8191
otherwise (in two’s-complement on a 16-bit machine).

(i= (1=s(float)33) }, and £=33
(i=(1long)33), and 1=33
(integer)33, and i=33

33, an integer

For an unsigned -8, the result is always 8191 {(ona
16-bit machine). Basic Types 2.2
Axfuels=4i=100/3

(d= (f= (1= (i=(100/3)))))

{d= {f={long)33) }, and 1=33
(d=({float)33), and £=33
{{double)33}), and =33

33, a double

{d= {f= (l=({integer}33) }), and i=33

INTEGER AND FLOATING POINL _..5TS 99

Evaluation is from right to lefi.

Since both 100 and 3 are integers,
the division is integer division and
thus the quotieni is truncated.

Recall that the value of an
assignment exprassion is the value
of the right-hand side cast in the
type of the left-hand side.

100 INTEGER A.~v FLOATING POINT CASTS

Basic Types 2.3

i=l=f=d4=100/3.

(i= (1= (£= {d= (100/3.))) })

{i= (1= (f=(double)33.333333)))
and 4=33,333333

(i= (1={float)33,333333})
and £=33.33333x

{(i={long)33,33333x), and 12232

{integer)33), and i=33

33, an intcger

Basic Types 2.4

d=f=1l=i=(double)100/3
(d= {f= {1= {i= { (double}100) 73))})}

(dm (f= (1= {1=33.333333))))

{(d= (f= (1={integer)33.333333) })
and i=33

(d= (f={long)33}), and 1=33

{d=(float)33), and £=33

{{double}33)}, and d=33

33, a double

3. is a double so the quotient
retains its precision.

The printf specification in this
program is **%.8g", which tells
printf to output numbers of up
to cight significant digits. Seven
significant digits is about the limit
of precision for £1oats on the
PDP-11 and VAX, so the cighth
digit is unreliable. The number of
significant digits is, of course,
machine dependent.

The float t¢ long conversion i
through truncation.

Notice that type cast has higher
precedence than /.

INTEGER AND FLOATING POIM.. CASTS 101

Basic Types 2.5

i=l=af=ds={(double)(100000/3)
{i= (1= (f= (d= ((double){100000/3}) }1})}}
{i= (1= (£= (d=(double}33333) }))

(iz (1= (f=(double)33333))}, and d=233333
(i= (1=(float)33333)), and £=33333
(i=({long}33333), and 1=33333
({integer)33333), and i=33333 or overflow

33333, an integer, or overflow

The operand to the
type cast is the quotient
from the integer
division of 100000 by
3.

33333 cannot be
represented as a 16-bit
signed integer, Most
implementations of C
will happily permit
arithmetic over- or
underflow. When your
calculations potentially
push the limits of your
machine, it is wise to
insert explicit range
checks.

102 INTEGER FLOATING POINT CASTS

Basic Types 2.6

d=f=1=3i=100000/3
{(d= (f= (1= ({=100000/3})))
(d= (£= (1l={integer)33333)))

and i=33333, or overflow As we've seen before, 33333 is
overflow for a 16-bit signed integer.
For integer representations with more
bits, 1 would get 33333, as would 1,
£, and 4. We'll continue with the case
for 16-bit integers.

(d= {(f=(long)-32203))

and 1=-32203 The resuit of an operation that leads to
overflow is a legitimate number, just
not the number expected. The 33331
is lost, regardless of future type casts.

{d={float)-32203)}, and £=-32203
{ (double)-32203), and 4=-32203
-32203, a double

About mumbers. The treatment of numbers is not one of C’s strong points. C does aut
provide a way to cakh arithmetic errors cven if the hardware so obliges. The range of the
numerical data types is fixed by the compiler writer; there is no way to specify a range in the
language. To achieve range checking, about the best one can do is explicitly test the value
of variables at critical points in a calculation.

E Basic Types 3.1

initially 4=3 .2, i=2
x=x (ysd/i)#2

(x= (y=3.,2/2) +2)
(x= (y=1.6)»2)

(x=1+2), and y=1
{x=2)
2, and x=2

b Besic Types 3.2

initially 4=3.2, i=2

y= (x=d/1i)%2
{y={(x=1.6)=2)
{y=1.642), and x=1.6

{y=3.2}
3, and y=3

MORE .nsTS 103

3.2, adouble, is of higher type than 2, an int.
Thus the quotient is a double.

y. an int, gets 1.6 truncated.

Since x is a double, the result of the assignment is a
double.

1.6, a double, determines the type of the product.
¥y, an int, gets 3, 2 truncated.

104 MORE CASl.-

Basic Types 3.3

initially d=3.2, i=2

y=ds (x=2.5/d)

(y= de (x=2.5/4))

(y= @»2.5/d)}, and x=2.5/4

{y=2.5)
2, and y=2

Basic Types 3.4

initially d=3.2, i=2
x=d+ (y={{int)2.9+1.1)/4d)
{x= 4w (y={2+1.1)/4})

(x=d+ {y=3.1/d4})
(x= d» {y=.something))
{x=d+0), and y=0

0, and x=0

Abowt mixing types. By now you have seen enough cxamples of how mixing floating point
and integer values in expressions can lead to surprises. It is best to avoid arithmetic with
operands of mixed type. If you do need it, make the type conversions explicit by carafully

using casts.

x is a double, so the precision of
2.5/dis retained.

y gets 2. 5 truncated.

Type cast has higher precedence than
*.

y gets O regardiess of the value of
“something’’, since **,something” is
between 0 and 1.

IF STA . —...ENT 105

Control Flow 1.1

initially y=1

if(yl=0) x=5;
{yl=0)

(11=0)

TRUE

The first step is to evaluate the condition.

Since the condition is TRUE, the true part of
the if statement is executed.

x=5

Control Flow 1.2

initially y=1

1f(y==0) x=3; else x=5;

(y==0) Evaluate the condition.
FALSE

x=5 Execute the false part of the i £ statement.

106 IF STATEMEN.

Control Flow 1.3

initially y=1

z=}

if{ y<0) if{ y>0) x=3;

else x=5;

x=1

if{ y<0) {
if({ y»>0) x=3;
elge x25;

}

{ y<0)

FALSE

Control Flow 1.4

initially y=1
if(zey<0) x=3;

elge if{ y==0) xa25;
else x=27;

{ z={y<0))

{ 2=(1<0))

{ g=PALSE)
PALSE, and z=0
{ y==0)

PALSE

x=7

First x is assigned 1.
The braces indicate statement nesting.

The condition of the first 1 f is FALSE, thus the
true part is skipped. The else clause is contained
in the true part of the first i £ since it belongs to
the second if. The rule in Cis thatan glge
clause belongs to the closest if that can accept it.

Begin by evaluating the fiest condition. We will
use parentheses, as before, to indicate the binding
of operands to operators.

Since the condition of the first 1 £ statement is
PALSE, the faise part of the if is exccuted. The
false part is another 1£ statement, so its condition
is evaluated.

The condition is PALSE, thus the false part of the
tement is executed.

Control Flow 1.5

initially y=1
if(z={y==0)) x=5; x=3
if(z=(y==0)) { x=5; } x=3;

(z={y==0) }
(z=PALSE }
FALSE, and z=0

x=3

Control Flow 1.6 .

initially y=1

if(x=z=y); x=3;
1f(x=z=y) { ; } x=3;
{ x={z=y)))

{ x=(z=1))

(x=1}), and z=1

TRUE, and x=1

Xx=3

IF STATEM.....T 107

The true part of an if is the single
statement or biock following the condition
for the if.

Evaluate the condition.

Since the if statement does not have a

false part, control falls through to the next
stalement.

The true part of the 1£ is a null statement.

Evaluate the condition.

The if condition is TRUE, so the true part
of the if is executed. The true partisa
null statement and has no efflect. Finally,
the statement following the if is executed.

108 WHILE AND | STATEMENTS

Control Flow 2.1

initially x=0, y=0
while(y<10) ¢++y; X +=Y¥;
while(y<10) ++¥3

({y<10)

{ y>=10)

y=0

+ey

y = 0 through 9 in the loop
¥ = 10 on exit
x+=y;

x=0+10
x= 10

PBegin by analyzing the factors that control
the execution of the while statement:

The loop condition. The body of the loop is
executed as long as the loop condition
evaluates to TRUE.

The exit condition. The exit condition, the
negation of the loop condition, is TRUE
upon & normal termination of the loop.

The initiol value of the control variable.
This is the value of the control variable
during the first iteration of the loop body.

The effet on the control variable of
executing the body of the loop.

y*= 0 the fiest time in the loop. Each time
through the body y is incremented by 1.

When y= 10 the loop condition cvaluates
to FALSE and the iteration terminates.

Control passes to the statement following
the loop body.

Conirol Flow 2.2

initially x=0, y=0

while{ y<10) x += ++¥y;
(y<10 }

{ y»=10)

y=0

ey

¥ = 0 through 9 in the loop

X += ++Y

x =55

y = 10 on exit

Control Flow 2.3

initially y=1

while{ y<10) { X =y++; 2 = ++y; }
{ y<10)

{ y»=10)

y=1

Y+, ++¥

y=1,3,5,7,9inthe loop

x=1,3,6,7,9
z=3,5,7,9,11

¥ = 11 on exit

WHILE AND FOR STATE TS 109

The loop condition.
The exit condition.
The initial value of the control variable.

The effect of the loop on the control
variable.

As in the previcus problem.

x gets the sum of the values of y (after
y is incremented) in the loop.

The sum of the integers 1 to 10.

The loop condition.
The exit condition.
The initial value of the control variable.

The effect of Lthe loop on the control
variable.

y== 1 the first time in the loop and is
incremented by 2 each time through
the loop.

x takes on the value of y in the loop
before it is incremented.

z takes on the value of ¥ in the loop
after it has been incremented by 2.

110 WHILE AND L STATEMENTS

Control Flow 2.4

for(y=1; y<10; y++)} x=y;

y<10
y>=10
. y=1
Y+
y = 1 through 9 in the loop
x = 1 through 9

y = 10 on exit

Control Flow 2.5

for(y=1; (xa2y)<10; y++) ;
y<10

y>=10

y=1

VAR

¥ = 1 through 9 in the loop

x = 1through 10

y = 10 on exit

The for statement aggregates the
controlting factors of the loop.

Loop condition.
Exit condition,
Initial value.
Effect,

x gets the value of y in the body of the
loop.

Loop condition.
Exit condition.
Initial value.
Effect.

x gets the value of ¥ just before the
evaluation of the loop condition. Note that
the condition is cvaluated one time more
than the body is executed.

Control Flow 2.6

for(x=0,y=1000; y>1; x++,y/=10 }
PRINT2(d,x,¥y};

y>1

y<a1

¥=1000

y/=10

¥ = 1000,100, 10 in the loop
x =0,1,2in the loop

¥ = 1 on exit

X = 3 on ¢xit

WHILE AND FOR STATF iTs 111

Loop condition.
Exit condition.
Initial value.
Effect.

x=0 from the for statement
initialization. x is incremented
after the body and before the
test. (The PRINT2 statement
is in the body.)

112 STATEMENT NESTING STATEMENT NESTING 113

Control Flow 3.1 Control Flow 3.3

initially i=sinshigh=low=0, input="PI=3.14159, approximately’ initially i=in=high=1low=0, done=FALSE,

The loop condition effectively is input="PI=3.14159, approximately"

NEXT (i) | =EOS, where

while(o= (NEXT(1)!=BOS))
while{ (c=NEXT{4i))!=EO0S && !done) { ¢ successively takes on the

NEXT(i) successively takes on the
character values from input. ¢
gets the truth value of

NEXT{i) I =EOS, which, by
definition, is TRUE in the loop and
FALSE on exit.

c is always 1 in the loop, 50 lowis
always incremented (1 < 060).

The iteration continues until all the
characters in input have been
read, C uses the ASCII nul
character, 00, as the end of string
marker.

if{ 1<’0’) low++

while{ ¢c={(II=EOS})

Control Flow 3.2 .

initially i»inshighalows0, done=FALSE,
inputs'PI=3. 14159, approximatasly’
while{ (c=MEXT(i))!aEQS && !done) € successively takes on the value of
each character from input.

if{ 'P*'«<’0") The first time through the loop
c=’p’ hence the if condition is
FALSE.

TRUE, and high++.
Back at the loop test. (The if

elss if('P’'>"9")
while{ ‘I’ |=B0S &5 ldone)

statement comparing low, high, -

and in with ENUF is outside the
loop, indentation to the contrary.)
Since done is not effected within
the loop, the iteration ¢nds when
¢=E0S. In the loop, the counters
low, in, and high are
incremented depending upon the
value of ¢ with respect to the digit

if(0P4<ooc ,
else if{ 'P’'>'9")
done = { ++high=«=ENUF)

while(‘I’)1=EQS && |done)
if{ 'I’«<*0’)

elgse if(‘'I’'>"9%)

done = {(++highs=ENUF)
while{ "=’ 1205 L& [done)
if("='<'07)

elge if{ *2’>’9")

done = {++high==ENUF)
while(“3°1=EQS && 1done)

value of each character from
input.

FALSE.
TRUE.

high, after being incremented,
is not equal to ENUF, so done
is assigned FALSE. high=1.

TRUE.

FALSE.

TRUE.

high=2, done=FALSE.
TRUE.

FALSE.

TRUE.

high=3, done=TRUE.

done=TRUE, 0
{done=FALSE, and the loop
terminates.

114 SWITCH, Bl._..K, AND CONTINUE STATEMENTS

Control Flow 4.1

char inputlJ="SSSWILTECHIN 1\ 11W\ 1HALLMP 1"

for{ia2; (c=input(2])t=’\0"}

awiteh(’s*) {

default: putchar{’s’)

continue

for{ ; (c=inpucl31)t=’\0"; 144} {

switch(’'w’) {

default: putchar{‘'W’}; continue

-

switceh({’L’) {

case 'L’ : continue

In the £ox loop:
is5, ¢s’'L’;
ing, o=’
i=?, cn’E’;
i=B, c=’'C’}
i=9, c="H’;

switchi(’1°) {

The character array input is
initialized to the character
string "S&88...MP1",

c takes character values from
input beginning at the third
character.

The first time through the
switch statement c='8°’.

The default case is taken
since none of the case labels
match *§°. § is printed.

The continue stalement
forces the next iteration of
the innermost enclosing loop,
in this case, the for loop.
Notice that continue is
effectively a branch to the
reinitialization expression of
the for.

© gets the fourth character
from input.

o="'W’.

As before, W is printed.
Similarly for i=4, ¢="1".
i=S5, c="L".

The * L’ case is taken;
nothing is printed,

Nothing is printed.
T printed.

Nothing is printed.
C is printed.

H is printed.
i=10, c=* 1",

case “1’: break

putchar{’ *)

for(; (eminput(111} 1e’\0*; £+¢) {

switch(‘\vt’) {

case 1:

while((c=inputl++il)ia’\1’ ga clI=’\0") ;

In the while loop:

1=12, c='\11*;
113, c='w";

i=14, cx’'\17;

case 9: putchar(’'s’)

case ‘'E’: case 'L’: continue

SWITCH, BREAK, AND CONTINUE STATL.__NTS 115

The break statement forces
an exit from the innermost
enclosing loop or switch. In
this case, it causes a branch to
the statement following the end
of the awitch.

A space is printed.

Back at the top of the for
leop.

The character constant *\n”,
where 7 is up to four octal
digits, yields a character with
the octal value n. For instance,
\0 yields the ASCII character
nul, and \ 101 the character
A,

Case labels may be either
character or integer constants.
A\ 1 maitches the integer 4 since
C automatically coerces char
to int.

The exit condition for the
while is cither c==x’\1* or
end of string. Each time the
while test is made, i is
incremented by 1, thus, the
loop advances i past the
characters of input to either
the next ‘\ 1’ character or the
end of string.

Nothing is printed.

Nothing is printed.

The while loop terminates.
The statements from each case
follow one another direcily;
there is no implicd braak

between cases. Case 9 follows
case t. S is printed.

Cases "B’ and ‘L’ follow case
9,

116 SWITCH, B....AK, AND OCONTINUE STATEMENTS

for(; (c=inputl15]); i+4) {

In the for loop:
i=15, c=‘W’;
i=16, c="A’;
i=17, e='L";
i=18, e='L";
i=19, ¢=’N";
i=20, c="P*;
i=21, e=’1";
i=22, e=x"\0";

putchar{’\n’)}

Again, back to the top of the
for loop.

W is printed.

A is printed,
Nothing is printed.
Nothing is printed.
M is printed.

P is printed.

Space is printed.

The f£ox loop terminates.

CHOOSE THE RIGHT CONDITION]17

Programming Style 1.1

The need for a continue siatement can often be eliminated by altering a test coadition.
The resulting code is sometimes remarkably cieaner,

For this problem, simply negating the test to the i f statement will do.

while(A)
if(!B) C3

Programming Style 1.2

The do...while is another of the C constructs that can somectimes be replaced to
advantage. If cither a do...while or a while can be used, the while is always
preferred since it has the desirable property that the condition is tesicd before every
iteration of the loop. That the condition is not tested before the first iteration of a
do...while loop has becn the source of many a program bug.

In this problem, the if and do...while are redundant; they are effecting a while.

do { First, climinate the continue.
if(A) { B; C; }
} while(a):

while(a) | Then replace the do, . .while and if witha while.
B; C;
}

118 CHOOSE The RIGHT CONDITION CHOOSE THE RIGHT CONSTRUCT 119

Programming Style 1.3

i icnced

roblem of deeply nested if statcments 18 well' 'known 1 0] most_ expericnc
::;zmmen: by the que one gets to the innermost condition the' surrounding _c?ndJUom
have been forgotien or obscured. The counter approach is to qualify each condition fully,

Programuming Style 2.1

done = i = 0; The first observation is that the
while(i<MAXI &5 !done) { if...continue construct is
if({ (x/=2}) > 1) 1443 cffecting an if...else. So

but this tends to generate long conditions that are obscure from the start. ‘Alas. good elge done++; make it an if...else!
judgement must prevail! }
Here are iwo possibilities for this probiem: i=0; Then it becomes clear that

while(i<MAXI K& (x/=2)>1)} i++; « onc loop condition is done

cqual to PALSE;
¢ done is FALSE as long as
the if condition is TRUE;
e thus, one loop condition is

if{ A &L B &E C) D3
elge 1if{ YA && B & C) E;
else if(IA &6 B && IC)} F;

or,

if(B)
if{ A & C)} D;
else if(1A && C) E3
elge 1£(A &8 IC } F;

Programming Style 1.4

This problem has a straightforward idea hierarchy:

e while there are more characters on the line
s multiway switch based on character type

o« return ALPHA
e return DIGIT
¢ return OTHER.

This translates casily into C:

while{ (cs=getchar(}) 1= “\n’) {
if{ c>=’*a’ && ce=’'2’) return({ ALPHA);
elme if(c>=’'D’ && cx='9") return(DIGIT);
else if{ cl=’"’ &b cla’\t’) return(OTHER);

}
returni(BOL)};

(x/2)>1.
Make it explicit!

for(i=0; i«<MAXI && (x/=2)>1; i++) ;3 A while statement that is
preceded by an initialization
and that contains a change of
the loop control variable is

exactly a for statement.

Programming Style 2.2

There are usually many ways to express an idea in C. A useful guideline is to group ideas
into chunks. C provides a hierarchy of packaging for these chunks:

o the lowest level ideas become cxpressions;
e c¢xpressions are grouped together into statements;
e statements are grouped together into blocks and functions.

In this problem there is a two level idea hicrarchy. At the lowest level are the expressions
B, D, P, and G. They are related as the mutually exclusive cases of a multiway switch., A
cohesive representation for a general multiway switch is the 1£...else if consiruction,

if(A) B;

else i£(C) D;
else if{E) P;
elge G;
return;

0 CHOOSE THE RIGHT CONSTRUCT

rogramming Style 2.3

‘The key observation in this problem is that the underlying structure is a three-way switch
with mutually exclusive cases.

plusflg = zeroflg = negflg = 0;

if{ a»0) ++plusflg;
elge if{ a==0) ++zeroflg;

eige ++negflg;

Programming Style 2.4

i= 0;

while((c=getchax())I=EOF && cl=’\n’

if(cl=’\n’ §& cl='\t’

slivs] = ¢

continue;

}
1€(cm=’ 1’
gli++]) = ¢

i= 0;

while{ (c=getchar())1=EOF && cli=’\n’

if(ef="\t’

slive] = ¢;

|

)

continue;

}

if{ c=="\t’
}
i =93

while((c=getchar())!=EOF && cl=’\n"

{

’

’

i

HIR

) slivs] = ¢

if{ ci=’\t’) sli+s] = ¢

L

else sli++]

-

#

.

»

CHOOSE THE RIGHT CONSTRUCT 121

y |

y A

)

for(i=0; (c=getchar(})I=EOF && clz’\n’; i++ }

if(cl=’\t"
else slil =

or,

) gli) = ¢

+ .
¥

+

for(i=0; (c=getchar())|I=EOF && cl=’\n’;

sli] = cla’\t’ ? ¢ :

*

#

13
»

i+e }

Reformatting the
statements to indicate
nesting is a good start.
Then look closer at the
break and
continue statements
to see if they are really
necessary. The break
goces easily by adding
the negation of the
break condition to the
condition for the
while.

The first i £ condition
can then be reduced.
(c l=*\n’isnowa
loop condition, hence it
must always be TRUE
in the 1 f test.)

The continue
statement is effecting
an if...else.

Finally, it is clear that
sl 1] gets the next
character if the
¢haracter is not a tab,
otherwise it gets a
space. In other words,
the code mercly
replaces tabs by spaces.
The last two versions
show this quite clearly
while also pointing out
the close relationship of
the i f to the
conditionai. In this
example, the i f
emphasizes the test for
tab and the conditional
emphasizes the

assienment ta nf4 1

122 CHOOSE THe xIGHT CONSTRUCT

Programming Style 2.5

if{ jok) y = 3 / (xl=0 7 x 3 NEARZERO) ;
elge v = k / (xi=0 7 x : NEARZERO) ;

y = MAX(j,k} 7 (xI=0 ? x : NEARZERO) ;

In this problem it is quite clear _ '

that x | =0 is not the primary
idea; the test simply protects
against division by zero. The
conditional nicely subordinates
the zevo check.

A case can be made that the
assignment to y is the primary

idea, subordinating both testr. &
(MAX returns the greater of is &

two arguments.)

 Storage Classes 1.1

int i=0;

main{)
{
auto int i=s1;

PRINT1(d,i.1);

int i=2;

PRINT1(a,1i.2);
{

i2+=%;
PRINT1(4,5.2);
}
PRINT1(d,1.2);
}
PRINT1(d,1i.1);

BLOCKS 123

id=2¢

{The notation st.# is used to reference the variable x defined at
block level #.') The storage class of 1.0 is extern.? The scope of
1.0 is potentially any program loaded with this file. The lifetime
of 1.0 is the full execution time of this program.

Block level is now 1.

1.1 = 1 (1 at level 1).

The storage class of 1.1 is auto. The scope of 1.1 is the function
wain. ‘The lifetime of i.1 is the duration of the execution of
main.

When two variables have the same name, the innermost variable is
referenced when the name is given; the outer variable is not
directly accessible.

Block level is now 2.

iz =2

The storage class of 1.2 is auto, the default storage class for
variables defined in block 1 or deeper. The scope of i.2 is block 2
and its lifctime is the duration of execution of block 2.

Black level is now 3.

i2 = 3,

4.2 is printed since it is the innermost variable named 1.
Block ievel returns to 2.

1.2 is printed again.

Block level returns to 1; i.2 dies.

With the death of 1.2, 1.1 became the innermost variable named
1.

Block level returns to 0.

" 1. The bock level at any point in the text of a program is the count of left braces ({) minus the count of
right braces (}). In other words, it is the number of textually open blocks. The outermaost level of a
program, i.c., no blocks open, is block level 0.

1 You might ask why the storage class of i is not explicitly declared here using the extexrn keyword.
: Ualess declared otherwise, the storage class for variables defined at block level 0 is extern. Tagging
a vatiable with extern does not definc the variable. Instead, it tells the compiler that the variable
has been defined elsewhere at block level 0.

124 FUNCTIONS

Storage Classes 2.1

int i=LOW;
main()

{

auto int i=HIGH;
reset(i.l/2);

PRINT1(d,i.l);
reseti(i.l=i1/2);

PRINT1({d,1.1};
i.l=reset(i.1/2);

int reset{1)

{{int i=13)

i.reset = ireset<=2? 5 3 23
return{i.reset);
}

PRINT1{d,i.l)

workover(i.l);

workover{5}

{ (int i=53;)

i.workover = 0 » whatever;
PRINT1(d,i.workover);

return(i.workover};

}
PRINT1(d,1i.1);

10 =0

il =5,

The function reset is called with the value 1.1/2, or
2. Its execution has no effect on 1.1.

reset is again called with i.1/2. This time i.1is
assigned 2 as a side cffect of the function call. Again,
reset has no effect on 1.1,

1.1 gets the value returned by reset called with
i.1/2. We will expand the function call in line.

The type of the value returned by a function is
specificd in its declaration. reset rcturns a value of

type int,

ireset = 1.

Parameters in a function behave like initialized local
variables. We indicate thesc implied assignments by
surrounding them with parentheses.

i.reset = 5.
reset returns the integer 5; thus, i.1 = 5.

workover is passed the value of i.1; i.1 is not
affected by the call. We'll expand workover since it
includes a PRINT.

If not otherwise specified, functions return an int.
i.workover = 5.

i.workover = 0.

workover returns 0, but the valuc is ignored in the
calling routine.

Storage Classes 3.1

int i=13

main()

{

auto int i,3;

i.l = reset{);
reget{)}

{

return(i0);

}
for{ j.1=1; 3.1<3; §.0%+) {
PRINT2(d,i.1,5.1); i
PRINT1(d,next(i.l));

int next{1)

{ (int j=1;)

return(j.next=i.0++);

}
PRINT1(d,last{i.i));

int lagt(1)

{ (int j=1;)

atatic int i=10;

MORE FUNCTIONS 125

i0=1.

i.1 and 3.1 are defined, but not yet set.

i.] gets the value returned by reset.

As reset has ncither a2 parameter nor a
local variable named i, the reference to i
must refer to i), reset returns 1, so
il=1,

§.1=1.

Jonext = 1

_1.0 = 2 but next returns 1 since the
increment occurs after the value of 1.0 s
taken.

'I:hc return statement references 1.0
since next knows of no other i. j.next
dies with the return.

JJast = 1.

ilast = 10.

‘last has a local variable named i
initialized to 10. The storage class of 1 is
static, which means that i is initialized
when the program is loaded and dies when
the program is terminated.

126 MORE FU IONS

return(jlast=1last--};

}
PRINT1(d,new{i.l+j.l});

int new(2)

{ (int i=23;)

int j=10;

return(i.new=j.new+=i.new);

}
ford 3.1=1; 3.1<3; f.lee) {

PRINT2{4d,i.l,3.1};

PRINT1{d,next(1.1));

PRINT1(d,last(i.l));

PRINT1({d,new{i.l+3.1)};

i.last = 9 but 10 is returned since the
decrement occurs after the value is taken.

j.last dies with the return, but 1 .Jast lives
on. Thus, when last is called again,
i.last will be 9.

i.new = 2.
j.new = 10.

jonew = 12, i.new = 12, and 12 is
returned.
j.new and i.new die with the return.

3.1 = 2, _
Back to the for statement. For this
iteration we will generalize about the effect
of cach statement.

The effect of executing the loop body is to
increment j.1 by one. The loop has no
effect on the value of 1.1,

next ignores the valuc it is passed and
returns the current value of 1.0. As a side
effect of executing next, i.0is
incremented by one,

last also ignores the value of its passed
argument. It returns the current value of
its local static variable, i]ast, Asa
side effect of executing last, ilastis
decremented by one.

new returns the value of its argument plu
10. There are no lasting side effects.

Storage Classes 4.1

int i=1;
main{)

{

auto int i, j;
i.l = reget();

extern int i

reset()
{

return(i.0);

}
for(j.l=1; 3.1<3; §.1++){
PRINT2(4&,1.1,3.1);
PRINT1(d,next(i.l}));
static int i=10;

next{)

return(i.nln+=1);

}
PRINT1{d,last{i.l)};

last()

{

returni{i.nin-=1);

LES 127

i0=1.

The extern statement tells the compiler that { is an
external variable defined elsewhere, possibly in
another file. Here i refers to 1.0,

1.0 is the external i referenced in reset.
il =1

3.1 =1

The second source file begins with an external
definition of a variable named i. This definition
might appear to be in conflict with the external
variable i defined in the first file. The designation
static, however, tells the compiter that this i is
known only within the current file. In other words, it
is only known within the functions next, 1ast, and
new. We will reference it by i.nln; i.nln = 10.

The declaration of next does not include any
arguments. The value passed by main is ignored.

i.nln = 11 and next returns 11.

inln = 10 and lagt returns 10. last references
the same i previously incremented by next.

128 FILES

PRINT1(d,new(i.l+3.1));
new(2)
{(int i=2;)
static int j=5;

return{i.newsj.new=5+2);

}
for(J.1=1; j.1<3; 3.1e+) {

PRINT2{d,i.1,3.1);
PRINT1(4d,next(1i.1));
PRINT1(d,last{i.l});

PRINTI1(d,new{i.l+3j.1});

inew = 2,
j.ncw = §,

j.new = 7, i.new = 7, and 7 is returned.
i.nla is unaffected, i.new will die with the
return, and j.new will be 7 when new is called

again.

3.1 =2)
In this iteration we will generalize about the
effect of each statement.

The effect of the loop is to increment j.1 by
one.

next increments i.nln and returns the
resulting value,

last decrements i.nln and returns the
resulting value.

new adds its argument to j.new and returns
the resulting sum.

Pointers and Arrays 1.1

intall ={0,1,2,3,4});

for(1=0; i<=4; i++)
PR{d,alil);

? Pointers and Arrays 1.2

int «p;

Eor(p= &alo0]);
p<=bald4];

PR(d,=p};

p++)

pe<ssalal

SIMPLE POINTER AND . .AY 129

a is defined to be an array of five integers, with
elements alil=1 for i from 0 to 4.

i takes on the values 0 to 4.

alil successively accesses each element of a.

Declarations of the form ¢ype +x tell the compiler
that when »x appears in an expression it yields a
value of type fype. x is a pointer-to-fype taking on
values that are addresses of elements of type fype.
Yype is the base type of x. In this problem, p is
declared as a pointer-to-integer; the base type of p
is int.

5al 0] cvaluates to the address of al 01,

Array elements are stored in index order, that is,
al 0] precedes al 1] precedes al2) and so on.
Thus p, initialized to &a (01, is less than &al41.

+p cvaluates to the integer stored at the address
contained in p. Since p holds &al0], #pis
alol,

When applied to a pointer variable, the increment
operator advances the pointer to the next element
of its base type. What actually happens is that the
pointer is incremented by gizeof (base ppe)
bytes. C does not test to insure that the resulting
address is really that of a valid clement of the base
type. In this problem, p is advanced to the next
element of a.

P is again tested against the end of the array. The
loop is terminated when p points beyond the last
element of a. While in the loop, p points
successively to each element of a in index order.

130 SIMPLE POL~:.R AND ARRAY

Pointers and Arrays 1.3

for{ p=5al0]),ix1; f«<=5; i++)

PR{4,plil);

P points to the start of the array a. 1 takes
on the values 1 through 5.

plil successively refers to the elements of
a. pl5] points outside of the array.

About arrays and indices. Though by far the most common use of [is to represent armay
subscripting, (1 actually is a general indexing operator. x[1) is defined to be »(x+1},
where x is usvally an address and 1 is usually intcgral. The rules of address arithmetic
apply, 50 1 is in units of gizeof (bdase type of x). (It should by now be clear why array
indices begin at 0. An array name is actually a pointer to the first element in the array. An
index is the offsct from the array start. The offset to the first element from the array start is
0.} In this last problem, i is used toindex off p. pli] = #(pei) = a{a+i) = alil
i goes from 1t0 5. When i=5, p+1i points just beyond the cnd of the array, hence the
value at p+i is unknown, This is such a common mistake, it is worth noting again: a»
array with n elements has indices of 0 through n-1.

-

Pointers and Arrays 1.4

for(paa,i=0;

p+i <= a+d;

- PR{d,«{p+rli)};

ptt, L+¢)

p+i <= a+4d
PR(A,»x(p+i));
ptt, i++

p+i <= a+d
PR{d,»(p+i));
pet, ise

p+i <= a+d

p gets the address of the first clement of a.

p=a, i=0, so p+i=a+0, which is less
than a+4.

#{pei)} = a{a+0) = al0l.

p points to the second element of a, i is
1.

p=a+1, i=1, thus p+i=a+2.
s(psi) = al2].

p=a+2, i=2,

pti = a+4.

e(pei) = aflal

p=a+3, i=3.

p+i = a+6, and the loop terminates,

Pointers and Arrays 1.5

for{ p=a+4;
pr=a;
PR(4,»p);
p--

Pointers and Arrays 1.6
for(p=a+d4,i=0; 1<x4; i++)
PR(A,pl-i]);

Pointers and Arrays 1.7

for(p=a+4; pr=a; p--)

PR{d,alp-al};

SIMPLE POINTER AND ARRAY 131

P paints to the fifth element of a.

The loop terminates when p points below a.
The integer pointed to by p is printed.

p is decremented to the preceding clement.

P peints to the last element of a, i goes from
0to 4.

The element -i away from the last element of
a is printed.

P points successively to the elements of a from
the last to the first,

p-a cvaluates to the offset from the start of

the array to the element pointed to by p. In

other words, p-a is the index of the element
pointed to by p.

132 ARRAY OF ITERS

Pointers and Arrays 2.1

int all =1{0,1,2,3,4}

int +pl() = {a,a+1,8+2,8+3,2+4};

int sspp = p;}

a is initialized to be an array of five
integers.

When encountered in an expression,
+pl] cvaluates to an integer, thus _
p{] must point to an integer, and p is
an array of pointer-to-integer. The five
clements of p initially point to the five
¢lements of a,

» % pp evaluates to an integer, hence
*pp must point to an integer, and pp
must point to a peinter-to-integer. pp
initiaily points to pl01].

Figure 2.1 illustrates the relationships between pp, p, and a.

PP

?19:i%1/¢!¢
ERER
011]2}3]|4
Figure 2.1

Pointers and Arrays 2.2

PRINT2(d,a,%a};

PRINT3(d,p,*p,ssp);

paINT3{d,pp.*PPo‘*‘PP) H

Pointers and Arrays 2.3

PP++

spp-a

#+pp

*pp++

*++pp

++8pD

*

ARRAYOF __ITERS 133

As noted earlier, the name of an array is
synonymous with the address of the first element in
the array. The value of a is thus the address of the
array a, and #a is cquivalent to al 0],

p evaluates to the address of the first element of
the array p, #p vields the value of the first
element, i.e., p{0], and »»p yields the integer at
the address contained jn pl ¢, i.e., the value at
alo),

pp yi¢lds the contents of pp, which is the dddress
of p. «pp yields the value ai p, or pL0). And
##pp yields the integer pointed to by p(0], or
alol.

PP is a pointer to pointer-to-integer (the base type
of pp is pointer-to-integer), so pp++ increments
PP 10 point to the next pointer in memory. The
effect of pp++ is indicated by the bold arrow in
Figure 2.3-1.

PP points to the second <lement of the array p,
pi1). The value of pp is thus p+1.
pp-p = (p+1)-p, whichis 1.

pp points to pl 1] and «pp points to the second
element of the array a. The value of #pp is thus
a+1. app-a = (a+1)-a.

=pp points to al 1), so ##pp yields the conteats
atal1],

+({pp++)

Unary aperators group from right to left. First the
increment is bound, then the indirection. The bold
arrow in Figure 2.3-2 shows the effect of the
increment.

a{+epp)
{Figure 2.3-3)

++{spp}
{Figure 2.3-4)

134 ARRAY OF PUniTERS ARRAY OF POIN,cRS 135

. ' Pointers and Arrays 2.4

PD \\ PP 3\

p ? ® "BE Y p » L] L] L L} pp + pp \
. \
a [0]1121314 a lof112(31]4 P |ele[eial? P lele|e|ale
\\ \
a |01112]|314 a |0]l1]12]|3i{4
Figure 2.3-1 , Figure 2.3-2
Figure 2.4-1 pp=p Figure 2.4-2 s {#(pp++})
PP | N PP x\
p P le 1KNK; PP L& PP | &
\ N\
a |[0f[1]2]3]|4 a |0[1]2([3]4 P Tivly P'\"'\L
a |loj1]12]|3]4 a |0j1133|4
Figure 2.3-3 Figure 2.3-4

Figure 2.4-3 «(++(»pp}) Figure 2.4-4 ++{«(#pp))

136 MULTIDIM

Pointers and Arrays 3.1

TONAL ARRAY

aisa 3 by 3 matrix with rows 123, 456, and 789.

Pointers and Arrays 3.2

for(i=0; i<3; 1++)

int al3](3) = { alil[3] cvaluates to an integer at offset j from alill2-1]
{ 1,2,3 }, the start of row 1. alil yields the address of the
{ 4,5,6 1}, first element of row 1. And a yields the address of ealil
{ 7,8,9 } the first row of the matrix a. Thus a is a pointer

int spal3] = {
alol,al1),al2]

three-clement-integer-array, and al] is a pointer-
to-integer.

spal] cvaluates to an integer, thus pallisa
pointer-o-integer and pa is an array of pointer-to-
integer. pal 0] is initialized to the first clement of

slela+i)+i)

b3 the first row of a, pal 1] to the first element in the
second row, and pal2) to the first clement in the
third row.

p is a pointer-to-integer initially pointing to the fim

element of the first row of the matrix a. Pointers and Arrays 3.3

int «p = alo0};

for(i=0; i<3; i++)

Figure 3.1 illustrates the relationships between a, pa, and p. palil

plil

P14

o\

a
pal0] [e—=al0l{1]2}3
pal1] [e—=al1]|4]5(6
pal2] [¢—=al2]1|7(8]9

in memory.
Figure 3.1

MULTIDIMENSIONAL . AY 137

i goes from 0 to 2 in the loop.

al1102-1] selects the diagonal from al01[2] to
af21lol.

ali] yields the address of the first element of the
ith row in the matrix a. ~alil yields the value of
the first element of the ith row,

a+1 yields the address of the ith row of a. #(a+i)
yields the address of the first clement from the ith
row. #{a+i)+1i yields the address of the ith *
clement from the ith row. And «(«{a+i)+1i) gets
the integer value from the ith ciement of the ith
row,

i goes from 0 to 2 in the loop.

pali) accesses the ith element of pa. +palil
accesses the integer pointed to by the ith clement of

pa.
p points to the first element of the first row in the

matrix a. Since the base type of p is int, plil
yiclds the ith element of the first row in a.

Abowt array addresses. We have noted several times that the address of an array and the
address of the first clement in the array have the same value. In this past puzzle, we saw
that a and a[0] evaluated to the same address. One difference between the address of an
array and the address of the first clement in the array is the fype of the address and, hence,
the unit of arithmetic on an ¢xpression containing the address. Thus, since the type of a is
pointer to three-clement-integer-array, the base type of a is three-¢lement-integer-array and
a+1 refers to the next three-element-integer-array in memory. Since the type of al 0] is
pointer-to-integer, the base type of al 0] is integer and al 01+ 1 refers to the next integer

138 POINTER S1

Pointers and Arrays 4.1

char scl] = {
"ERTER",
“NEW",
"POINT",
"PFIRST"

Vi

char secpl] = {
c+3,c+2,c+1,0

b;

char saaCpp = CPp;

ac[] evaluates to a character, so ¢] points to
characters and ¢ is an array of poinier-to-character.
The ¢lements of ¢ have been initialized to point to the
character arrays "ENTER", "NEW", "POINT", and
“PIRST".

sxcpl] evaluates 10 a character, #»cp{] is a pointer-

to-character, and cpl] is a pointer-to-pointer-to-
character. Thus cp is an array of pointers te poiater-
to-character. The elements of cp have been initialized
to point to the elements of c.

s#scpp evaluates to a character, s scpp points to s
character, #¢pp points to a pointer-to-character, and
cpp points to a pointer-to-pointer-to-character,

Figure 4.1 illustrates the relationships between cpp, cp, and c.

CPP

<p

ERREED

zlz:tliz

MHIZIHIOI'UI/

@i nWHm

Figure 4.1

POINTEl EW 139

Pointers and Arrays 4.2

#(#(+s+cpp)} Increment cpp then follow the pointers.
(Figure 4.2-1)
(#{~-(#(++cpp))))+l Increment cpp, follow the pointer to epl2],

decrement cpl 2], follow the pointer to (0],
index 3 from the address in c(0], (Figure
4.2-2)

(«(cppl{-2)]}}+23 Indirecily reference -2 from cpp yielding
cpl 0], foliow the pointer to c¢[31, index 3
from the address in ¢[3). (Figure 4.2-3)

(teppl-111{-10)e1 Indircctly reference - 1 from cpp vielding
cpl 11, indirectly reference ~1 from cpl 1]
yielding ¢l 1], index 1 from the address in
cl1). (Figure 4.2-4)

About pointers, If you can work this puzzle correctly then you know everything you will ever
need to about the mechanics of using pointers. The power of pointers lies in their
generality: we can chain them together to form an endless variety of complex data
structures, The danger of pointers lies in their power: complex pointer chains are seldom
readable and even more seldom reliable.

Lo

140 POINTER § SIMPLE STRUCTURE, NESTED STF ‘URE 141

Pointers and Arrays 2.4 Structures 1.1
CPP cpPp E static struct §1 { The structure tag §1 refers to a
char cl4], »s; structure containing a character
} 81 = { "abe", "def" }; array, ¢, of length 4, and a
character pointer, 8. The
cp cp structure variabic 81 is an instanc
of the structure S 1 initialized to
char cl4)="abec”,
sgadef”
C p
¢ l h! l b\ .J . The structure has been defined as
static so that it may be
| initialized in the definition.
E N P F static struct 82 { The structure tag S2 refers toa
N| [E|l |O I char wcp; structure containing a character
T W I R struct 31 gs1; pointer, cp, and an instance of the
} 82 = { "gni*, { "jk1*, "mno" } }; structure $1, ss1. The structure
E B N S variable 82 is an instance of the
R _']L‘ T structure $2 initialized to
% 8 char scp="ghi";
L = struct 51 ggi=
Figure 4.2-1 Figure 4.2-2 {"3%1%, “mno®};
CpPpP cPpPp Figure 1.1 depicts the structures g1 and 2.
s1
cp cp
c Jajbl|c|n
s — el dlelf|B
c c {elinla '\1\
) F E N P F
N E O b N E 2 I
T| [w] [T] [R T (W] [T] [R cp . —lg/hji|B
el |u| [n] [s E| [8] [w} |s ss1 ¢ |jlk|1]a
R | o[[T R T| |T s . — m|n|o|®
8 8| [® 8 a] [®

Figure 4.2-3 Figure 4.2-4

Eianras 1 1

142 SIMPLE STR URE, NESTED STRUCTURE SIMPLE STRUCTURE, NESTED STRI JRE 143

Structures 1.2 _ Structures 1.3
PRINT2(c, A character is to be printed. : PRINT2(s, A string is printed.
ts1.c)lo] Reference the first chamcter of the ¢ field of the structure s 1.] s81.¢ Reference the string pointed to by the ¢ field of the structure
(Figure 1.2-1) 81. Recall that ¢ = &c(0]). (Figure 1.3-1)
Cel{s1.8) Reference the character pointed to by the s field of the . g1.8 Reference the string pointed to by the s field of the structure
structure 8 1. (Figure !.2-2) 2 - #1. (Figure 1.3-2)
¢ falbl|c|B c |lajbic|®
s o——t—ud{ d|le|f |8 S ————1awldie|f(8
Figure 1.2-1 3 Figure 1.3-1
81
s1
c la|lb|c¢c|N
c {a|bjc|t

Figure 1.2-2 _) Figure 1.3-2

144 SIMPLE STI

Structures 1.4

cp

ss1

cp
ss1

Structures 1.5

cp

ss81

cp
ss 1

TURE, NESTED STRUCTURE

Figure 1.3-2 ++((82.881).8)

Structures 2.1

struct s1 {

};

char +«s;
int i;
gtruct S1 »s1p;

static struct S1 all a {

};

{ "abca®, 1, a+1. 1},
{ "efgh", 2, a+2 },
{ "ijx1~, 3, a }

Btruct S1 spa=a;

ARRAY OF STRUC :ES 145

51 is declared to be a tag referring to a
structure containing a character pointer, s, an
integer, i, and a pointer to structure of type
S1, 81p. Thisis only a declaration; an
instance of $1 is not created.

a is a three-element array with clements of
1ype structure S1, a has been defined as

static so that it can be initialized in the
definition,

P is & pointer to structures of type S1. p is
initiatized to point to the first clement of a.

Figure 2.1 depicts the array a and the pointer p.

s2
h i
c jjlk
s L - i O
Figure 1.4-1 s2.cp
82
s ——=|g|h|i
¢ (]
S - aw=1 TN O
Figure 1.4-2 (82.881).8
s2 _/-\
¢c ijlk
8 L - I L)
Figure 1.5-1 ++(s2.¢cp)
s2 —//’“\
c |jlk]1]m _/\
s O— m O

a
— = al0] g —=lalblclaln
i 1
sS1pl—e
a1 e —~lelf[g[nTu]
i 2
:T——-S1p-—o
al2] s . ijjikil|n
i 3
S1pl—e
Figure 2.1

146 ARRAY OF STRUCTURES

Structures 2.2

PRINT3 (s,
(afo0l).s

p->8

(((al2)}.81p)=>)m

Strings are to be printed.

Reference the string pointed to by the s field of the
structure that is the first element of a. (Figure 2.2-1)

Reference the string pointed to by the s field of the
structure pointed to by p. (Figure 2.2-2)

Refercnce the string pointed to by the s ficld of the
structure pointed to by the s1p field of the structure
that is the third element of a. (Figure 2.2-3)

p| —t+—=alo]l

:a[‘I]

:a[2]

a .
S o—i=la[blc[d]n
i 1

sip|—*

S o—i—eiflgih|8
i 2

sipr—e
s iljtk(1}®
i 3

sip—*

Figure 2.2-1

ARRAY OF STRUCTURES 147

[N N

Figure 2.2-2

Pl ——t—=al0] s

s1pl—e
:a[ﬂ s

C—s‘lp—-—-o
al2] s

.

S1p—.

Figure 2.2-3

148 ARRAY Ol ..RUCTURES

Structures 2.3

for(i=0; i<2; i++¢) {
PR(4,
--((a[i])cil

PRlc,
++(t{alily.s)l3])

1 takes on the values of 0 and 1.
Pnint an integer.

Decrement then reference the integer in the i
field of the structure that is the ith element of
a. (Figure 2.3-1 shows the casc for i=0)

Print a character.

Increment then reference the fourth character
of the string pointed to by the s field of the
structure that is the ith clement of a. (Figure
2.3-2 shows the case for i=10)

a
p| *—Tt=alo0l s o=l a|lb|c|d|n
i 0
C—S1p——o
al1]l s o—t=leiflgih|8
i 2
S1pr—e
[2] s —i=|i|j|k|1l]0
i 3
sipl—e

Figure 2.3-1

ARRAY OF $____CTURES 14

a
""-‘a-[O] s ® alblcleln

1 0

C.*S'lp —
3[1] s [— el f g nlw

i 2

C—S‘Ip —e
a[2] s o—t—wt | J kl1)

i 3

s1p |—

Figure 2.3-2

. 150 ARRAY OF UCTURES

- Structures 2.4

Increment the s field of the structure pointed
to by p, then output the string pointed to by
the 8 field. (Figure 2.4-1)

First p is incremenied, then the s field of the
p->ith structure of a is accessed. (Figure
2.4-2)

The i field of the structure pointed to by the
s 1p field of the structure pointed to by p is
decremented then used as an index into a.
(Figure 2.4-3)

++{p->8}

al{(+ep)->i}).s

al--((p->s1p)->1}1.8

p| o——t—e—al0] s

i
al1] s .

i 1
Catorss
al2] s -—

i 3

s1pl—e

'l

l

Figure 2.4-1

ARRAY OF STRUCTURES 151

fude

.
~
=
(]

S1p—-.

Figure 2.4-2

N alo] s

o
1 0
S1p [—e
al1] s

*—
i 1
ro—

s1p

a[2] s [R .

.

(S
=
=t
=

1 2

S1pf—e

Figure 2.4-3

152 ARRAY Ol _ _INTERS TO STRUCTURES

Structures 3.1

atruct s$1 {
char »s;
struct S1 »81p;
b

static struet 51 all = {
{ "abed®, a+1 1},
{ "efgh", a+2 },
{ "ijx1"*, a }

b;

§1 is declared to be a tag referring to a
structure containing a character pointer, s, amd
a pointer to structure of type 81, s1p.

a is a three-element array with clements of
type structure $1. a has been defined as
gtatie so that it can be initialized in the
definition.

When encountered in a program statement, the '

plo]l

Structures 3.2

struct 51 #(pl3l);
expression « {pl 1} yields a structure $1. S
Thus, pl] points to a structure S1,and pisa § P[1]
threc-element arvay of pointers 1o structures of S
type S1. i pl2]
Figure 3.1 depicts the armays a and p.
P a
plo] alo)l s —] =lalblc|daln
pl1] S1p |—e
pl2] ::a[1] s — e[flg|nl8]| Eplo)[.
C_—‘E”P-—‘ P11
al2] s -~ il 3(k|1[8] Epl2]
sS1p—e b |
Figure 3.1

for(i=0; i<3; i+e)
plil = (alil).s1p;

alo]
al1]

al2]

alo)
al1]

al2]

(pl0])->8, (¢p)->g, (sep}.a

ARRAY OF POINTERS TO STRUCTURES 153

i takes on the valyes 0,1, 2

The i!h clement of p gets a copy of
the pointer in the s 1p feld of the ith
element of a, {Figure 3.2-1)

These are all ways of sayi
. ying the
thing. (Figure 3.2-2) y e

5

5

5

4
.
-
=
=2

S1p—-—.

Figure 3.2-1

S

Sipr—e

s

S‘lp——..

s

S1p-_..

Figure 3.2-2

154 ARRAY OF NTERS TO STRUCTURES ARRAY OF POINTERS TO STRUCs URES 155

Structures 3.3
swap{sp,a); p points to pl 0], so »p yields the content of
plod orsal1). ayiclds &alol.
temp = {6al1))->8; Equivalently, teap = al1].s.
{kal1))->8 = {&al0))->n Or,al1).s=alo0l.s
(talol)->g = temp gwap swaps the strings pointed to by the @
fiedds of its arguments. (Figure 3.3-1) 3 P a
(pl0l}->s, (¢p)->=8 (Figure 3.3-2)] _. p[O]
((+p)->8ip)->8 (Figure 3.3-3) _' ; p[1] 3[0] 8 ’ alblecldln
. S1pl—e
| s1pl—e

plo] al0] s o— a|b]c]a]8 .:
pl1]l] « s1pl—e ' Figure 3.3.2 ‘

pl2]] o— al1) s .

s1pl— §
al2] s . —i[jikf1|8 ¥ |
sip * E ;

B P |
§ri0) 2
; p ha—— alo] s
Figure 3.3-1 B — s1p i ajbjcidln |
pl2] al1] s | NARRE
B S 1p (=
Slpl— i

Figure 3.3.3

156 ARRAY OF NTERS TO STRUCTURES ARRAY OF POINTERS TO STRUC] S 157

Structures 3.4
swap(plol, (plo))-»81p}; pl0] contains 8al1}, (plo])->51p
contains &a[2]. (Figure 3.4-1)
[p) a
NG N EEEET
Sipl—e
P a b pl2]) al1] s o— elf hin8
plo) [od al0] s ° a[b[cld[y s1pl = g
pl1]] sip|-—e al2] s — A
i(jlkil}n
pl2]] o— al1] sip . el f|gln s1p =
al2] s . il jlk|1
s1pl— Figure 3.4-3 («(++(pl0)))).s
Figure 3.4-1
 plo]
Foon N N R
S1p
p a (2] o] al1] s _:._. 3
plO]] o= al0) s —] a[b[c[d[t] § s1p— e g/hlB
pl1]| o S1p—e E al2] 5 —
pl2]] o al1]l s e e[f]/glh S‘lp:-—:-— 2 Jqu
S1pl—e
al2] s o HEIERE
s1pj—e

Figure 3.4-4 ++((#{++({sp)->81p))}.8)

Figure 3.4.2 (pl0]l)->8

158 THE PREP ESSOR DOESN'T KNOW C

Preprocessor 1.1

int x=2;
PRINT(x#FUDGE(2) };

PR(a); putchar(’\n’)

PR{ x»+FUDGE(2) }; putchar{’\n’)

printf(®a= Xd\t*,{int)(a))

printf(™ x«PUDGE(2) = ¥d4d\t",
{int) (x«FUDGE(2)))

printf({® x+PUDGE(Z) = %aA\t",
{int)(xek+3.1459))

{int}(x»2+43.14159)

Beware! Macros can be a source of subtle trickery. Expanding a macro is strictly a mana J¢
of replacing one string by another. The macro preprocessor knows next to nothing abou G §8
Most surprises can be avoided by adhering to a few conventions. ;

Convention 1: Parenthesize ali macro bodies that contain operaiors.

The unwanted interaction between the replacement string and its context in this problem i :
avoided if FUDGE (k) is definedto be (k+3,14159). '

To understand the effect of a _
preprocessor macro, expand it in place 3

Always expand the leftmost macro. §
First, substitute the macro replacemeat J¥
string for the macro call. ;

Then substitute the argument(s) in s 4 :
call for those in the replacement siring 3§

Expand the leftmost macro, PR this
time.

Substitute the macro arguments.

A macro name that occurs betweta
quotes is not expanded. However,
macro arguments are expanded

wherever they occur in the macro bolp 38
Thus, x« FUDGE(2) replaces a inte
macre PR, but FUDGE(2) islefi ¥
unexpanded in the format of the lln
printf. j

Replace the format parameter k by e I
actual paramecter. Surprise! Fist §
multiply, then add (then truncate).

THE PREPROCESSOR DOESNT Kl 'C 159

Preprocessor 1.2

for{cel=0; cel«<=100; cel+=50)
PRINT2(cel,9./5#«cele32);

for{cel=0; cel<=100; cel+=50)
PR{ cel);
PRINT(9./5scel+32);

First expand the call to PRINT2,

for(cel=0; cel«<=100; cal+=50)
printf(* cels XdA\t",(int)(cel));
PRINT(9./5«cel+32);

Then expand the call to BR.

for{cele0; cel<=100; cel+=50)
printf(" cels Xd\t", (int)(cel}};
PR{ 9./5#cel+32); putchar(’\n’);

Expand the call to PRINT.

for{cel=0; cel«<=100; cel+=50)
printf(" cel= Xd\t",(int){cel));
printf(" 9./5scel+32 =Xd\t",
{int)(9./5ecel+32));
putchar{’\n’);

Expand the call to PR,

The' call to PRINTZ may look like a single statement, but it cxpands to threc. Only the first
PR is contained within the for loop. The second PR is cxecuted following the loop, with
cel=150.

Convention 2: Keep macro bodies cohesive; prefer an expression fo a statememt, a single
Halement to multiple statements.

For this problem, using commas in place of the semicolons in the bedy of the PRINT
macros satisfies Convention 2.

160 THE PREPR(

SOR DOESN'T KNOW ¢

Preprocessor 1.3

int x=1, y=2;
PRINT3(MAX(X++,¥),x,¥);

The PRINT3 macro is, of course, expanded
before MAX. However, to avoid obscuring
the point of the puzzles, in this and
fotlowing solutions the PRINT macros will
not be expanded. The first sicp then is to
substitute the replacement string for the call
t0 MAX,

Next, substitute the actyal arguments for
the formal arguments.

Finally, evaluate.

{a<pb ?7b:a),x,y

(X++<y P ¥ 1 X++) ,x,¥

(1<2 2y : x++), and x=2

()
2

PRINT3(MAX(xX++,¥),X,¥)3 Now execute the second call to PRINTI.

(X++<y P ¥ ! X44),%X,¥
(2<22y :x++), and x=3
(x++)

3, and x=4

x++ appears only once in the macro call but twice in the expansion, causing x to be
incremented sometimes by one and sometimes by two. The burden of protecting againgt
such unfortunate side effects can be placed cither with the macro writer or the macro user.

Convention 3: Avoid macro bodies that can cause obscure or inconsistent side effeas.
Convention 3A: Avoid expressions with side effects in macro calls.

In general, the problem of side effects in macros is quite tricky. Following Convention 3
often means copying argumenis into local variables within the macro; this extra overhead
reduces the speed advantage of macro calls over function calls. Following Convention 3A
requires knowing when a routine has been coded as a macro rather than a function; at best,
this violates the notion of the routine as an abstraction, and at worst, the routine may be
rewritten causing the assumption no Jonger to be valid.

For this problem following Convention 3A preserves MAX intact,

Preprocessor 2.1

int x=1;
PRINT(-NEG{x) };

--X, and x=0

CAUTIK AYS 16l

First substitute the macro replacement string
for the macro call. (As before, the PRINT
macto will not be expanded.)

The{: substitute the argument in the call for the
one in the replacement string.

The macro replacement string is exactl i

k I y those characters that follow the closing parenihesis
of the argument list. 'l'"he trick in this puzzle is that the -a immediately ipo‘:lows the
parenthesis. Sn!l, follo?rlng Convention 1 by defining NEG{a) to be {-a) produces the
cxpected expansion. It is also a good practice to begin cach teplacement string with cither a

tab or a space,

Preprocessor 2.2

PRINT(weeks{10080) }
{days(10080)s7)

{ {hours{10080)/24)/7)
({ (10080/60)/24)/7)
1

PRINT{ Qays(ming(86400}))
{hours(mins(86400))/24)
((mins(86400)/60)/24)
(((86400/60)/60)/24)

1

ch_lace each macro call with the macro body.
Notice that there is not a conflict between the
macro parameter mins and the macro mins.

Evaluate.

Expand the feftmost macro.

Evaluate,

162 CAUTHK AYS

Preprocessor 2.3

fitatic char input = "\twhich\if?";

if(c<’ ’) TAB(c,i,0ldi,cemp);
else putchar(c);

if(c<’ '’}
if(ec=2’\t’)
for(temps=B8-{i-0ldi-1)X8,0ldi=i; temp; temp--)
putchar{’ “);
else putchar(c);

TAB includes an open if statement. On expansion, the if consumes the following else.

Convention 4: Make macro replacement strings compiete C entities, be they expressions,
statements (minus the closing semicolon), or blocks.

For this problem, appending 2 null else clause to the TAB macro alleviates the difficulty.
(Notice that enclosing the macro replacement string in braces, i.¢., making it a block, does
not solve the problem.)

About macros and functions. Very often a rouline can be implemented using either a macro
or a function. The advantage of using a macro is that it will be exccuted faster since the
runtime overhead of a function call is avoided. The advantages of using a function are that
none of the tricky situations we've seen in the puzzles with macros will occur, and if the
routine is called several times, the implementation will probably require less memory. This
leads us to the final convention for using macros:

Convention 5: Keep macros simple. If you can'’t keep a macro simple, make it a function,

APPENDICES

-
W=

The precedence table illustrates the relative precedence of operators. Precedence determines
the order in which operands are bound to operators. Operators receive their operands in order

APPEN...X 1: Precedence Table

OPERATOR ASSOCIATIVITY
primary: (} []) -» , left to right
unary: | -~ ++ -- - (1ype) * & sizeof | tight to left

multiplicative: « / %

lefi to right

additive: + - left to right
shifi: << >» lefy to right
relational: < <= > >= left to right
equality: == |= Jeft to right
birwise: & left to right
bitwise: * left to right
bitwise: | left to rignt
| logical: &8 left 1o right
| logical: i} left to right
conditional: ? : right to Jeft
assignment; = += -3 ¢eic, right to jeft
comma: left to right

of decreasing operator precedence.

To determine the relative precedence of two operators in an expression find the operators in the
OPERATOR column of the table. The operator higher in the list has the higher precedence. If
the two operators are on the same line in the list, then look at the corresponding
ASSOCIATIVITY entry. If it indicates ‘“‘left to right'’, then the operator to the left in the

expression has the higher precedence; if it indicates “*right to left’’, then vice versa.

165

e ot b s rirllin L i AL it St = L kL

APPENDIX 2: Operator Summary Table

Arithmetic operators (operands are numbers and pointers)

» Additive
operator yields restrictions
x+y sum of x and y if either operand is a
pointer the other must
be integralt
x-y “difference of x less ¥ if cither operand is a

pointer the other must
be integral or a pointer

of the same base type
e Multiplicative
operator yields restrictions
Ly product of x and y x, ¥ must not be
pointer
x/y quotient of x divided x, ¥ must not be
by ¥ pointer
xXy remainder of dividing x x, y must not be
by ¥ double, float, or pointer
-x arithmetic negation of x, ¥ must not be

¢ Incremental

pointer

operator yields restrictions
x4+ (x-=}) x x must be a reference
x is incremented to a numeric valuc ora
(decremented) after pointer
use
++X {=-2) x+1(x-1) x must be a reference

x is incremented
{decremented) before
use

167

to a numeric value or a
pointer

t Iioiegral stands for the types int, char, short, long, and unsigned.

168 OPERATOR SUMMARY TABLE

Assignment operators

operator yields restrictions
xsy y cast in the type of x, x, y may be any type
x gets the value of ¥ but array
Xop=y x op (y) castin the x, y may be any type

type of x, x gets the
valuceof x op (y)

Bitwise operators (operands are integral)

e Logical

operator

yields

but array or structure

resirictions

x6y

-X

o Shift

operator

bit by bit AND of x and
y. AND yields a 1 for
each place both x and
y havea 1, 0
otherwise

bit by bit inclusive OR
of x and v; inclusive
OR yields a 0 for each
place both x and ¥
have a 0, 1 otherwise

bit by bit exclusive OR
of x and y; exclusive
OR yields a 0 for each
place x and y have the
same value, 1
otherwise

one’s-complement of
x; 1s become 0s and
Os 18

yiclds

restrictions

x<<y

X>>y

x left shifted y places,
the lowest y bits get Os

x right shifted y places;
the highest y bits get
03 for positive x, 1s or
0s depending on the

y must be positive and

y must be positive and

less than the number of
bits per computer word

less than the number of
bits per computer word

Logical operators (operands are numbers and pointers)

operator

yields

OPERATOR SUMMARY TABLE 16%

restrictions

x&&y

aily

AND of x and y: 1if
both x and y are
nonzero, 0 otherwise

inclusive OR of x and
y: 0 if both xand y
are zero, 1 otherwise

logical negation of x: 0

if x is nonzero, 1
otherwise

Comparison {operands are numbers and pointers)

resul is of type int

result is of type int

result is of type int

e Rclational
operator yields restrictions
x<y (x>y) 1if x is less than result is of type int

x<=y (x>=y)

s Equality

operator

(greater than) y, 0
otherwise

1if x is Jess than or
cqual to (greater than
or equal to) y, 0
otherwise

yields

result is of type int

restrictions

x==y (x1=y)

o Conditional

operator

1if x is equal to {not
equal 10} v, 0
otherwise

yiclds

result is of type int

restrictions

xX?Py:z

y if x is nonzero, z
otherwise

—_—

} OPERATOR SUMMARY TABLE

1dress operators

APPENDIX 3: ASCII Table

In octal
operator — "'t':lds — — b?:mz:::: [000 nulj001 soh|002 stxj003 etx|004 eot|005 enq]006 ack|o07 bel
*x © vaiue 81 Lhe acdres * P 010 bs |[011 ht [012 nl |013 vt |014 np |015 cr [016 so [017 ai
contained in x cast in {020 Ale|021 dc1)022 dc2(023 Ac3|024 Ac4|025 nak|026 syn|027 etD)
the base type of x j030 can|031 em |032 subl033 esc|034 £s [035 gs 036 rs |037 us
&x the address of x x must be a reference |040 sp (041 1 |042 " |043 # (044 3 045 X |046 & [047
10 a value j050 ¢ |051) |052 « {053 + |054 , |0osS - {056 . |057 /
xly] the value at the address one of the operands }::3 g g:: ; 'ggz 2 ;g:: ? ig,f,: : Ig:: E Iggg : g:; :
x+y cast in the base “‘““"““"""’d‘::““" [100 @ |[161 A [102 B |103 ¢ [104 D [105 E [106 P [107 ¢
type of the addross the 0::]“ must 190 H [111 I (192 J |113 K [114 L }115 M |116 N [117 ©
operand Integ [120 P 121 @ [122 R {123 s {124 7 |125 0 {126 V |127 W
x.¥y the value of the y field x must be a structure, {130 x 131 ¥ |132° z |133 [|134 N 135 1 |13é ~ [137 _
of the structure x y a steucture field j140 * |141 a [142 b [143 ¢ |[144 a4 |145 e |146 £ |147 g |
. {150 n |151 4 }1s2 153 X {154 1 |155 m [156 n [157 o
xX=>y the value of the y ficld x must be pointer to a {160 p [161 q |162 3 :163 s 1164 & st u }166 v ;167 v
of the structure at the structure, ¥ a structure 176 x {171 y {172 z 173 { [174 § {175 } [176 -~ [177 del
address x field
In hexadecimal
| 00 nul| 01 soh| 02 stx| 03 etx| 04 eot| 05 eng| 06 ack| 07 belj
'pe operators 08 bas | 09 ht | 0a nl | Ob vt | Oc np | 04 cr | Oe s0 | OF 8i
, - 10 dle| 11 dc1| 12 d4c2| 13 de3[14 dc4| 15 nak] 16 syn| 17 etb
operator . yields restnctions 18 can| 19 em | ta sub| 1b escll 1c £fs | 14 gs | 1e za | 1£ us
(type) x x cast in the type fype x may be any 20 8p | 21 1|22 " |23 # |24 $|25 %|26 &|27 °
expression 28 (|29)Y{2a #+#|2b +|2¢ ,|2 -]|2e . |28 7/
sizeof x the sizc in bytes of x x may be any 30 031 1)32 2|33 3|34 435 5|36 637 7|
expression 38 8{39 9 |3a :|[30 ;|3 <|3d =3 >}|3f 2|
o 40 § | 41 A | 42 B | 43 C |44 D| 45 E| 46 P | 47 &
sizeof (Hpe) the size in bytes of an | 48 H |49 I | 4a J | 4b K| 4c L | 4d M| 4e N| 4f O
object of type type |50 2|51 @]5S2 R|53 s |54 T|55 Uj56 Vv|57 Wl
|]s8 x| 59 ¥]50 z|S5 [[Se \N|54 1|5 ~|s& _
|60 * |61 a |62 b| 63 c|j64 A| 65 e| 66 £ | 67 g
|68 h |69 i|6a 3| 6b k|6c 1|64 m| 6e n| 6£ o
}quence operator |70 p| 71 q| 72 |73 8|74 |75 u|76 v |77 w
. L 178 x]179 y|7a z |70 ()7 (|74 } | 7e -~ | 7f del|
operator _yields | restrictions
x,¥ y X, y may be any
x is evaluated before y expression

ASCIl (American Standard Code for Information Interchange) maps a set of control anc
printable characters into a set of seven bit binary numbers. The tabies above show the
correspondence between each character and its value. Generally, the characters below 04(
octal (20 hexadecimal) are considered control characters and are not printable, though newline
tab, formfeed, etc. are located here. 040 and above are the familiar printing characters. Digit:
and letters are ordered in their natural way; 1 is before 2 and A is before B.

APPENL.iX 4: Type Hierarchy Chart

double + float

1
long

1

unsigned

1

int « char, short

The type hierarchy chart illustrates the ordering of the arithmetic types. The execution of each
arithmetic operator in an expression yields a result with the type of its highest typed operand.
Similarly, when two quantities are compared by a relational operator, the lower typed operand is
cast in the type of the higher typed operand. The vertical arrows in the chart show the basic
ordering: double is the highest type, int the lowest. The horizontal arrows indicate the
Butomatic type conversions. That is, operands of type float are always converted to type

“Tdouble before being considered in an expression. Likewise, operands of types char and
short are always converted to type int.

