

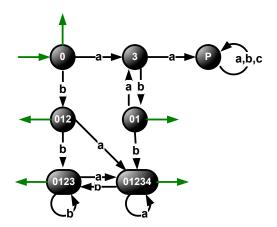
DE de rattrapage : Mathématiques pour l'informatique

Sans documents, sans calculatrice. Tout raisonnement doit être explicité.

Solutions

I. Automates

Exercice 1. Déterminiser et compléter si besoin est l'automate suivant :


	Etat	a	b
E/S	0	3	0,2
	1	-	1,2,3
	2	0,1,2	4
Е	3	-	0,1
S	4	-	4

(E – état initial, ou « d'entrée », S – état terminal, ou « de sortie ».

Résultat demandé : un automate déterministe complet sous forme de table de transitions (dessiner le schéma uniquement s'il n'est pas trop complexe) en indiquant clairement les états d'entrée et de sortie.

Solution

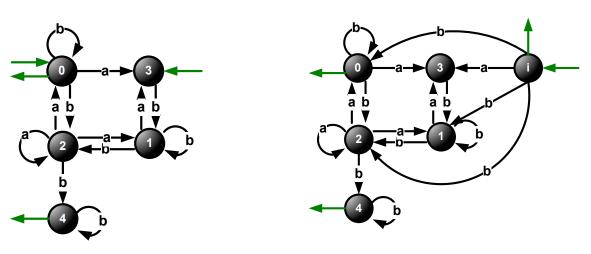
	état	a	b
E,S	03	3	012
	3	Р	01
S	012	0123	01234
S	01	3	0123
S	0123	0123	01234
S	01234	0123	01234
	Р	Р	Р

Exercice 2

a) Standardiser le même automate que celui donné ci-dessus à l'exercice 1. Vous pouvez si vous voulez donner le résultat sous forme de tableau, n'oubliant pas d'indiquer tous les états d'entrée et de sortie.

Solution

Les transitions ayant une entrée comme état source : 0a3, 0b0, 0b2, 3b0, 3b1. On ajoute un nouvel état d'entrée i qui est un état terminal parce qu'il y avait un état E/S dans l'automate d'origine (état 0), les états 0 et 3 cessent d'être des entrées, et on ajoute les transitions avec i comme source :


0a3, 0b0, 0b2, 3b0, 3b1 \rightarrow ia3, ib0, ib2, ib0, ib1; la transition ib0 y figure deux fois mais c'est la même transition.

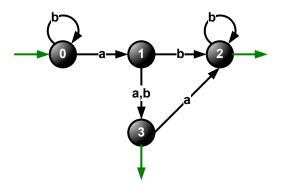
La table de transitions de l'automate standardisé devient donc

	Etat	a	b
S	0	3	0,2
	1	-	1,2,3
	2	0,1,2	4
	3	-	0,1
S	4	-	4
E,S	i	3	0,1,2

Graphiquement, l'automate d'origine :

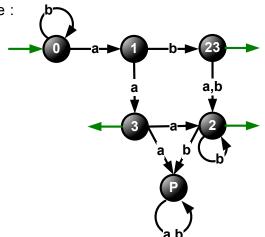
L'automate standardisé :

- b) Est-ce que votre automate standardisé reconnaît le mot vide ? (Expliquer la réponse !). Si la réponse est « oui », donner un automate reconnaissant le même langage à l'exception du mot vide.
 - Si elle est « non », donner un automate reconnaissant le même langage plus le mot vide.

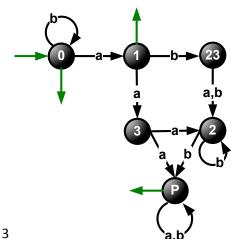

Solution

L'automate reconnait le mot vide car l'état i est à la fois initial et terminal. Pour qu'il ne reconnaisse pas le mot vide, il faut enlever la sortie de l'état i.

Exercice 3

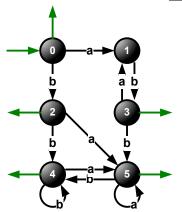

Construire un automate reconnaissant le complément du langage reconnu par l'automate cidessous.

Solution


Il faut d'abord déterminiser et compléter l'automate :

		a	b
Ε	0	1	0
	1	3	23
S	3	2	Р
S	23	2	2
S	2	Р	2
	Р	Р	Р

Puis, on échange les états terminaux et non terminaux :


		a	b
E/S	0	1	0
S	1	3	23
	3	2	Р
	23	2	2
	2	Р	2
S	Р	Р	Р

Exercice 4

Minimiser l'automate suivant, en détaillant le processus de minimisation (<u>écrire</u> explicitement les partitions successives Θ_i et ce qui se passe à chaque itération). Le résultat est attendu sous forme d'un schéma.

Solution

Il faut compléter l'automate avant de le déterminiser. On peut remarquer qu'on obtient l'automate déterministe de l'exo 1 avec les noms d'états modifiés :

		a	b
E/S	0	1	2
	1	Р	3
S	2	5	4
S	3	1	5
S	4	5	4
S	5	5	4
	Р	Р	Р

La partition initiale $\Theta_0 = \{T, NT\} = \{(0,2,3,4,5), (1,P)\}.$

Itération 1 :

	a	b	sou	$s \Theta_0$
0	1	2	NT	Т
2	5	4	T	Т
4	5	4	T	Т
5	5	4	T	Т
3	1	5	NT	Т
	0 2 4 5 3	0 1 2 5 4 5 5 5 3 1	0 1 2 2 5 4 4 5 4 5 5 4 3 1 5	

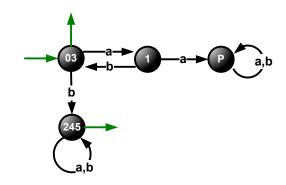
NT 1 P 3 NT T séparation

séparation en 2 groupes

G- -

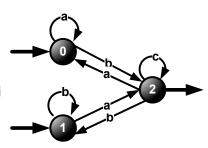
l n	В	l в	NIT	NT
Р	Р	Р	IN I	IN I

 Θ_1 ={(0,3),(2,4,5),1,P}.


Itération 2 :

		a	b	sous	s Θ_1	_
03	0	1	2	1	245	pas de
05	3	1	5	1	245	pas de séparation
						•
	2	5	4	245	245	
245	4	5	4	245	245	pas de séparation
	5	5	4	245	245	3cparation

Donc $\Theta_2 = \Theta_1 = \{(0,3), (2,4,5), 1, P\} = \Theta_{fin}$.


L'AM devient :

		a	b
E/S	03	1	245
	1	Р	03
S	245	245	245
	Р	Р	Р

Exercice 5

a) Donner le système d'équations permettant de trouver l'expression rationnelle correspondant au langage reconnu par l'automate ci-contre. Donner l'expression du langage reconnu par l'automate en termes des expressions rationnelles X₀, X₁ et X₂ (que vous pouvez noter 0, 1 et 2 si vous préférez) correspondant aux états.

Solution

(Eq.1)
$$X_0 = \varepsilon + X_0 a + X_2 a$$

(Eq.2) $X_1 = \varepsilon + X_1 b + X_2 b$

$$L = X_2$$

$$(Eq.3) X_2 = X_0b + X_1a + X_2c$$

b) Obtenir le langage reconnu par l'automate en résolvant le système d'équations que vous avez obtenu.

Solution:

$$X_0 = \varepsilon + X_0 a + X_2 a = (\varepsilon + X_2 a) a^* = a^* + X_2 a a^*$$

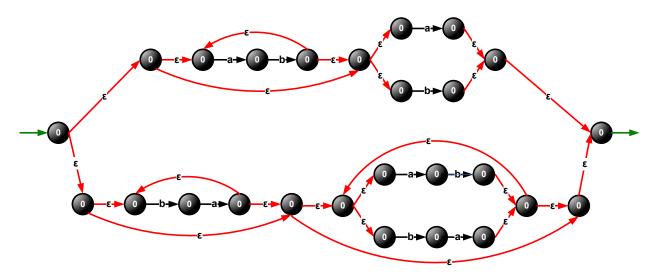
$$X_1 = \varepsilon + X_1b + X_2b = (\varepsilon + X_1b)b^* = b^* + X_2bb^*$$

Remplaçant dans Eq. 3, on obtient

$$L = X_2 = X_0b + X_1a + X_2c$$

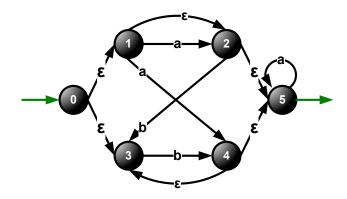
$$= (a^* + X_2aa^*)b + (b^* + X_2bb^*)a + X_2c$$

$$= a^*b + X_2aa^*b + b^*a + X_2bb^*a + X_2c$$


$$= (a^*b + b^*a) + X_2(aa^*b + bb^*a + c)$$

$$= (a^*b + b^*a)(aa^*b + bb^*a + c)^*$$

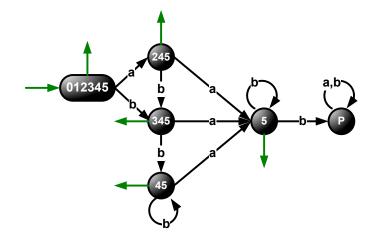
Exercice 6


a) Soit l'expression rationnelle : L = (ab)*(a+b) + (ba)*(ab+ba)*.
 Dessiner un automate asynchrone suivant exactement les règles données dans le cours.

Solution

Où je n'ai pas numéroté les états car nous ne faisons aucune autre opération avec cet automate.

b) Déterminiser l'automate asynchrone suivant :



Attention ! Les flèches $1\varepsilon 2$ et $4\varepsilon 3$ sont dirigées différemment, une vers la droite et l'autre vers la gauche !

Solution:

		a	b
E/S	012345	245	3 4 5
S	245	5	3 4 5
S	3 4 5	5	4 5
S	45	5	45
S	5	5	Р
	Р	Р	Р

<u>Arithmétique</u>

Exercice 7

Un centre aéré organise une sortie à la mer pour 315 enfants accompagnés de 42 adultes. Comment peut-on les diviser en groupes (il faut qu'il y ait plus d'un seul groupe) comportant chacun le même nombre d'enfants et d'accompagnateurs (donner toutes les solutions possibles)?

Solution

Le nombre de groupes doit être diviseur de 315 et de 42 ; PGCD(315,42)=21. Donc le nombre de groupes doit être un diviseur de 21 : 21, 7, 3, 1. Nous avons exclu le choix de 1 seul groupe. Voici les solutions :

- a) 21 groupes de (315/21=15) enfants et (42/21=2) adultes ;
- b) 7 groupes de (315/7=45) enfants et (42/7=6) adultes ;
- c) 3 groupes de (315/3=105) enfants et (42/3=14) adultes ;

Exercice 8

a) Soit les nombres suivants : $a = 2^{10} \times 3^5 \times 5^3 \times 11 \times 17^4$, $b = 2^5 \times 3^5 \times 5^5 \times 11 \times 13 \times 17$ Quel est leur PGCD ? <u>Expliquez</u>!

Solution

Le PGCD est le produit des puissances minimales de chaque diviseur premier. $PGCD(a,b)=2^5 \times 3^5 \times 5^3 \times 11 \times 17$.

b) Appliquez la méthode d'Euclide pour trouver le PGCD des deux nombres suivants :

The least ten

$$a = 1239$$
, $b = 123$

Votre réponse doit impérativement inclure le résultat ainsi que le déroulement complet, étape après étape, de la méthode d'Euclide.

Solution