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prg"acé

This book is intended to serve as an inttoduction to quantum physics.
In wtiting it, | have kept several guidelines in mind.

1. First, it is belpful for the development of intuition in any new field of
study to start with a base of deiled knowledge about simple systems. [ have
therefore wotked out a number of problems in great detail, so that the insight
thus obrained can be used for mete complex systems,

2. Every aspect of quantum mechanics has been helpful in understanding
some physical phenomenon. I have therefore laid grear swess on applications at
every stage of the development of the subject. Although no atea of quantum
physics is totelly developed, my intention is to bridge the gap. between a
modetn physics course and the more formel development of quantum mechanics.
. Thus, many applications are discussed, and I have stressed order-of-magnitude
. estimates and the importance of numbers.

3. In keeping with the level of the book, the mathemartical struorure has
been kepe as simple as possible, New concepts, such as operators, and new
mathematical wools necessarily make their appearance. I have dealt with the
former more by analogy than by precise definition, and I have minimized the
usc of aew tools insofar as possible,

In approaching quantum theory, I chose to start with wave mechanics and
the Schigdinger equarion. Although the state-vector approach gets at the
essential stucture of quantum mechanics more rapidly, experience has shown
- that the usc of more familiar tools, such as diffetential equations, makes the
theory more accessible and the comtespondence with classical physics moré
tmnspﬂ.rent.

The book probably contains a little more matesial than can comforeably be
covered in on¢ year. The basic material can be covered in one academic quarter.

vir



viii Preface

It consists of Chaptets 1 to 6, 8, and 9, in which the motivation for a quantum
theory, the Schrédinget equation, and the general framework of wave mechanics
are covered. A number of simple problems ate salved in Chapter 3, and their
relevance to physical phenomena is discussed. The geperaltzation to many
particles and ¢o three dimensions is developed. The second-quarter matetial deals
directly with atomic physics problems and uses somewhar more sophisticated
wools. Here we discuss operator methods (Chapter 7], angular momentum
(Chapter 11), the hydtogen atom (Chapter 12), opefatots, matices, and spin
_(Chapter 14), the addition of angular momenta (Chapter 15), time-independent
pertucbation theory (Chapter 16), and the rea] hydrogen atom (Chapter 17).
This material prepares the student to cope with a large varicry of problems that
are discussed duting the third and last quarter. These problems include the inter-
action of charged pacticles with a magnetic field (Chapter 13), the helium atom
{Chapter 18), problems in the radiztion of atoms and related topics (Chaptets 22
and 23), collision theory (Chaprer 24), and the absorption of radiation in mattet
{Chapter 25). This material is supplemented by a'more qualitative discussion of
the structure of atoms and molecules (Chaprers 19 to 21). The lase chapter on
elementary particles and their spmmetries serves the dual putpose of describing
some of the recent advances on that fronder of physics and of showing how the
basic ideas of quantum theory have found applicability in the domain of very
short distances. ' ' .

Several topics arise naturally as digtessions in the development of the
subject mateet. Instead of lengtheaing some long chapters, I have placed this
material in 2 separate ““Special Topics” secrion. There, relativistic kinematics,
the equivalence principle, the WKB approximation, a deailed treatment of
lifetimes, line widths and scattering resonances, and the Yukawa cheory of
nuclear fotces ate discussed. For the same reason, a brief introduction ro the
Fourier integral, the Dirac delta function, and some formal material dealing
with operacors have been placed in mathematical appendices at the end of the
book.

Iam indebted to my colleagues at the University of Minnesora, especially
Benjamin Bayman and Donald Geffen, for many discussions on the subject of
quantum mechanics. I am grateful o Eugen Merzbacher, who read the manu-
script and made many helpful suggestions for imptovements. I also thank my
stidents in the intreductory quantum mechanics course that I taught for several
yeats, Their evident interest in the subject led me to the writing of the supple-
mental notes that later became this book.

Stepher Gariorewicz
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chapter 1

The Limits of Classicaf Physics

The end of the nincteenth century and the beginning of the twentieth
witnessed a crisis in physics. A series of experimental results required concepts
torally incompatible with classical physics. The development of these conceprs,
in a fascinatig interplay of radical conjectures and brilliant experimnents, led
finally to the gmamum theery.! OQur objective in this chapter is to describe the
background of this crisis and, armed with hindsight, to expose the new concepts
in 2 mapner that, while not historically correct, will make the transition ro
quantum theory less mysterious for che reader. The new concepts, #he parricle
properiies sf radiation, the wave propestier of master, and the quaniization of physical
quantities will emerge in the phenomena discussed below.

A. Black Body Radiation

When a body is heated, ic is seen to madiate, In equilibrium the Lighe
emirted ranges over the whole specorum of frequencies », with 4 speceral diseri-
~ bution thar depends both on the frequency or, equivalently, on the wavelength

- of the light %; and on the remperatute. One may define a quanticy E(x, T), the
emissive power, as the energy emitted ac wavelength A per unic area, per unit
. time. Theoretical reseatch in the field of thermal tadiadon began in 1859 with
i, “the work of Kirchhoff, who showed thas for a given X, the ratio of the emissive
power E o the absorptivity A, defined as the fraction of incident radiation of

" wavelength A that js absorbed by the body, is the same for all bodies. Kitchhoff

considered two emitting and absotbing perallel plates and showed from the
equilibrium condition chat the encrgy emited was equal to the energy absorbed
(for cach 1), thar the ratios E/A must be the same for the two plates. Soon

1 An inseresting account of che development of quantum theory may be found in
M. Jammer, The Concoptual Derelopmens of Quantewe Mechaniir, McGraw-Hilt, New York,
1956,

1



2 Quantum Physics

thereafter, he obsetved that for = black budy, defined as # surface that totally
abscrbs all radiation thet falls on jt, so that A = 1, the function B\, T) is a
universal function

In order to study this function it is necessary to obtain the best possible
source of black body radiation. A pracrical solution to this problem is to con-
sider the radiation emetging from & small hole in an enclosure heated to a tem-
perature T. Given the imperfections in the sutface of the inside of the cavity,
it is clear that any radiation falling on the hole will have no chance of emerging
again. Thus the susface presenved by the hole is very nearly “totlly absorbing,”
and consequently the tediativn coming from it is indeed “black body radiation.”
Provided the hole is small enough, this radiation will be che same as chat which
falls on the walls of the cavity. It is therefore necessary to understand the distri-
bution of mdiation inside a cavity whose walls ate at a temperature T,

Kirchhoff showed that the second law of thermodynamics requires that
the radiation in the cavity be isotropic, that is, that the flux he independent of
ditection; that it be homogeneous, that is, the same at all points; and that it be
the same in al] cavities at the same tem peranire—all of this for each wavelength *
The emissive power may, by simple geomettic arguments, be shown o be
connected with the enetgy density (%, T) inside the cavity. The telacion is

4EQ, T)
[

ulh, TV = (t-1)

The energy density is the quantity of theoretical intevest, and further undes-
standing of it came in 1894 from the wotk of Wien, who, again vsing very
general arguments,® showed that the energy density had to be of the form

¥, T) = M AT (1-2)

with § still an unknown function of a single variable. If, as is convenient, one
deals instead with the energy densicy as a function of frequency, (v, T), then it
follows from the fact that

4o, 1) = b, T)|
sgunT - (13)

3 These martets zre discussed in many texthooks on modern physics and statistcal
physics. Refetences can be found at the end of this chaprer,

A Wien considered 2 perfectly reflecring spherical cavity contracdng adiabatically.
The redistribution of the tocagy as a function of A has to be caused by the Doppler shift
on reflection, See Chapter V in F. K. Richemyer, E. H. Kennard, and J. N. Cooper Tusreo-
duction te Medern Phyics, McGraw-Hill, New York, 1969,
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Fig. 1-1. Experimental vetification of Eq. 1-2 in the form #WT)/T: = a
universal function of 7"

that the Wien law reads

wly, T) = vig (—_;) {1-4)

The implications of this law, whick was confirmed expetimentally (Fig, 1.1),
ate twofcld: ' :

1. Given the spectral distribution of black body radiation at one tem-
perature, the distribution at any other wemperature can be found with the help
of the expressions given above,

- 2. If the function f{x}—ot, cquivalently, the function £(x)—has a maxi-
mum for some value of x > 0, then the waselength M ar which the energy
density, and hence the emissive power, has its maximumn value, has the form

&

Mnx = ,1_., (1'.5')

- where £ is a nniversa! constant,

Wien used a model (of no interest, except to the historian) to predict a
form for g(v/T}. The form was

g/T) = Cmim (1-6) .

and, remarkably enough, this form, containing rwo adjustable pasameters, fic
the high {requency (low wavelength) data very well. The formuls is not, how-
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Fig. 1-2. ({4) Distriburion of power radiated by a black body er varions tempera-
eures. () Comparison of data at 1600°K with Planck formula and Rayleigh-Jeans
formula,

evet, in accord with some very general notions of classical physics. Rayleigh, in
3900, derived the result

sy, T) = Eﬂ T (1-7)
P

whete & is Boltzmann's constant, £ = 1.38 X 104 erg/deg and ¢ is the velodity
of light, ¢ = 3.00 X 10 cm/sec. The ingredients that went into the detivation
were (1) the classical law of equipartition of enesgy, according to which the
average cnergy per degree of freedom for a dynamical system in equilibrium is,
in this context,? £T,, and (2) the calculation of the number of modes {i.c., degrees
of fieedom) for electromagnetic radiation with frequency in the interval (v, r +
dv), confined in a cavity.t :

+ The equipartition law predicts chat the enetgy per degree of freedom is &T/2. For
an oscillator—and the modes of the eleciromagnetic field are simple hermonic oscillacors—
a conttiburion of £T72 from the kinetic energy is matched by a like contribution from the
potential ensrgy, giving ET.

» We will need this result again, 2od derive it in Chaprer 23. The number of modes is
das*/c3, Fasther multiplicd by 2 facror of 2 because nansverse slactromagneric waves or-
respond 1o two-dimensional harmonic oscillators.
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The Rayleigh-Jeans law (1.7) (Jeans made a minor contibuticn to its
detivation) does not agree with experiment at high frequencies, where the Wien
formula works, though it does fic the experimenal curve ar low frequencies
(Fig. 1.2). The Rayleigh-Jeans law canno, on genetal grounds, be correct, since
the total energy density (integrated over all frequencies) is predicted to be
infinire!

- In 1900, Max Planck found a formula by an ingenious inerpclation
between the high-frequency Wien formula and the low-frequency Ragleigh-
Jeans law. The formula is

Bxh »#
W, T) = = (18)

where b, Planck's constant, is an adjustable parameter whose numetical value was
found to be & = 6.63 X 10~% erg sec. This law 2pproaches the Rayleigh-Jeans
form when v — 0, and reduces to

. Sxh
R(D", T} = _s. pl g AT (I —— rl\!lkl")—]
. ¢

h
o 8% p3 g—helET (1.9)

when the frequency is lasge, or, more accurately, when 4» 3> ET. If we rewrite
. the formula as 2 product of the number of modes [we obtain chis from (1-7) by
dividing the energy density by £#T] and another factor that can be interpreted as
the averape energy per degree of freedom

8 A
“.T) =5 mar [
S hefkT
== proT — (1-10)

“we see char the classical equipartition law is altered whenever the frequencies are

- mot small compared with &T/h. This alteration in the equipartition law shows

. that the modes have an avemge energy thac depends on their frequency, and

. thac the high frequency modes have a very small average energy. This effective
. cuc-off removes che difficulty of the Rayleigh-Jeans density formula: the total
~ energy in » cavity of unit volume is no longer infinite. We have

h o
U{T)=£af & —2
[y o

ehlk!' -1
_ 8xh (E_T)‘ = (e /ET)® dhw/kT)
e \RSjy et

Bkt * x
=FT",.. d\.’e#_l (1'1[)
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“The integral can be evatuated,® and the tesult is the Stefan-Bolzmann expression
for the total radiation energy per unit volume

UT) =T (1-12)

with # = 7,56 X 10~ erg/em?® deg*, derived much earlier, except for the
pumerical constant in front, on the basis of thermodynamical reasoning. A
deparcure from the pure equipattition law was not entirely unexpecred: one
consequence of it was the Dulong-Petit law of specific heats, according to
which the product of the atemic {or molecular) weight and the specific heat is a
constant for all solids; yet depattures from the Dulong-Petit predictions were

_obsetved as eatly as 1872.7 These departures indicated that the specific heat

decreased at lower temperatures.®

The unqualified success of his formula drove Planck to search for is
origin, and wichin two months he found chat he could derive it by assuming
that the energy associated with each mode of the elecrromagnetic field did not
vaty continuousty (with average value £T) but was an integral multiple of some
minimum qusntum of energy €. Under these circumstances 2 calculation of the
average enctgy associated with each mode, using the Boltzmann probabilicy
distribution in a system of equilibrium at cemperature T,

Pt kT

P(E) = —

z

'e_'ﬁ (1-13)

led wo

el
Il

}; EP(E}

¥ g e

T

i e—nt T
#=10

L} = = -
f dx b (5~ 1) af dexie= ) e
a L] n=(

o " o B

=Z_ i f dyyey =6 isf_

r={ =+ 1)‘ L] n=l ut 135

% Ackording ta the equiparition law an assembly of N oscillators (and e larrice of

atoms with elastic forces between them may be so viewed) will have eoergy 3INET, the

factor 3 coming from the fact that the osdillarots in e solid are three-dimensional, rather

then rwo-dimensional 16 For the radiition feld in an enclosure. The specific heat for a mole

is abmined by differenuiating with respece e 7' and seting N = Na, Avogadre's number,

ao that €, = 3Nk = 3R where B = 8.28 x 107 &7 /deg.

2 Specific beats will be discussed very briefly in Chaprer 20.
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]

1—¢* ,;s,'ﬂ
&

= o 3 (1-14)

This agrees with {1-10) provided we make the identification
£=he (1-15)

and de not change the aumber of modes.
Planck azgued that for some unknown reason the atoms in the walls of the
© cavity emicted radiation in “'quanta” with enetgy shv (g = 1,2,3, . . ), buc
consistency demanded, s established by Einstein 2 few years later, that electro-
magnesic radiation bebaved as if it vonsisted of a collection of energy quanta with
eneryy by.®

The energy cattied per quantum is extremely small. For light in the
optical range, with, say, A = 6000 3,

6.63 > 1077 X 3.00 X 1077

‘
=K — = e N 10712
v =4 N 6% [0 3.3 X erg

.2 50 that the number of light quanta of this wavelength, emirced by a 100-watt
% source, say, is :
' 100 X 107

= 33X 100 £ 3 X 10 quanta/sec

* With so many quanta present, it is perhaps not surprising that we do not ex-

" perience the paricle nature of light directly; we shall see that on a MECIOsCopic

scale no deviations from classical optics are expected. Nevertheless, Planck’s
" interptetation of his formula radically changes our picture of radiation.

k£

- B. The Photoelectric Effect

As successful as the Planck formuls was, the condusion from it of the
quantum natute of radiation is hardly compelling. An important contribution
to its acceptance ceme from che work of Albert Einstein, who in 1905 used che

*Fot s given frequency v there may be any imegral number of quane presenc, and
bence the energy can take on the values mbe, with 1 = 0,1,2,3, . .. .
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concept of the quantum natare of light to explain some peculiar properties of
metals, when these are irradiated with visible and ultraviolet light.

In 1887, the photoelectric effect was discovered by Hertz, who, while
engaged in his famous experiments on dlecrromagnetic waves, found thac che
fength of the spark induced in the secondary circuir was reduced when the
terminals of the spark gap wete shielded from the ultraviolet light coming from
the spark in the primary ciccuit. His observations arrracted much interest and the
following facts wete established by fusther experiments;

1. When polished meta] plates are irradiated, they may emit electrons; '
they do not emit pasitive ions.

2, Whether the plates emit electrons depends on the wavelengrh of the
light. In genesal thete will be a threshold that vaties from metal to metal: only
Jight wich a frequency greater than a given threshold frequency will produce a
photoelectric current.

3. The magnitude of the cusent, when it exists, is propottional co the
intensity of ¢he light source.

4. 'The energy of the photoelectsens is independent of the intensity of the
light source bur varies linearly with the frequency of the incident light.

Although the existence of the photoeleciric efiect can be understood
within the famework of classical electramagnetic theory, since it was known
that thete wee elecrrons in metals, and on¢ could imagine them to be acceleraved
by absorption of radiation, the frequency-dependence of the effect is not compre-
. hensible within that framework. The energy cartied by sn electiomagnetic wave

"is proportionsl to the-intensity of the source, and frequency has nothing to do
with it. Furthetmore, a classical explacation of the effect, which would have to
involve the concentration of the energy deposited on single photoclectrons,
would carry with it an implied time delay berween the arrival of the radiation
and che departure of the electron, the delay being longet when the invensicy is
decreased. In fact, no such time delays were ever observed, at least none longer
than 107¢ sec, even with incident radiation of very low fatensity.

Einstein considered the radiation to consist of a collection of quantz of
enctgy by, where » is the frequency of the light. The absorption of a single
quantum by an electton—a process that may take less time chan the upper
limit quoted above—increases the electron energy by an amount by, Some of
the energy must be expended to separace the electron from the metal. This
amount, W {called the work fumcion), might be expected to vary from meral to
metal, but should not depend on the electron eacrgy. The rest is available for
the electron kinetic energy, so that on the basis of this picture onc expecrs that

1#This was established by 40 ¢/m measurement,
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~ Fig. 1-3. Photoelectric effect data showing 2 plot of rearding o
potential necessary 1o stop electron flow from a meta (lithium),

© of equivalently, cleciron kinetic energy, as a function of frequency

- of the incident light. The slope of the line is /e,

the following relation betwren clectron velocity # and light freq';xcncy v
ot =y — W {1-16)

should hold. The threshold effect and the linear relation berween etectron
kicetic energy and the frequency are contained in chis formula. The propar-
donality of the current and the soutce intensity can also be understood in terms
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of these light quanta, o phetons, as they came to be calied: a mote intense light
soutee emits more photons, and these in tum can liberate mote electrons.

Millikan carried out extensive experiments and established the correctness
of the Einstein formula (Fig. 1.3), What Millikan's and the caclier expetiments
ptoved was that sometimes light behaves like a collection of particles, and
that these “particles” can act individuzlly, so that it is possible to contempiate
the exiseence of a single photon and ask what its properdies are. A by-product of
these experiments was information about metals. Te was found that W was of
(he ordes of sevesal elecuron vols (1 €V = 1.6 X 1071 erg), and this could be
cortelared with other properties of the metals.

C. The Compton Effect

The experiment that provided the most direct evidence for the particle
nature of radiation is the so-called Compton effect. Compron discovered that
mdiation of a given wavelength (in the X-ray region) sent through a mewallic
foil was scawered in a manner not consisteat with classical mdiation theory.
According ta classical cheory, the mechanism for the effece is the re-radiation of
light by electrons set into forced oscillations by the incident radiation, and this
leads to the prediction of intensity observed at an angle @ that varies' as
(1 + cos? 6, 2and does not depend on the wavelength of the incident radiation.
Compton found that the mdiation scattered through ¢ given angle actually
consists of two components: ope whose wavelength is the same as that of the
incident radiation, the ocher of wavelenpth shifted celative co the incident wave-
lengzh by an amount that depends on the angle. (Fig- 1.4). Compton was able to
explain the "modified”” component by treating the incoming radiztion as a heam
of photons of eneegy b, with individual photons scartering clastically off
individua] electrons. In an elastic collision, momentum as well as energy must
be conserved, and we must first assign a momentum to the photon. By analogy
with relativistic patticle kinematics we argue thas

b= hjc (1-17)

The argument is that it follows from the relacivistic relation between energy and
mmentun

E = [(mo®)? 4 ()7]"" ~(1-18)
where m, is the rest mass of the particle, that che velocity at this momentum is
dE 2
I N C— (1-19)

B E  (mic+ pret
For a photon this is always ¢, and henge the phator rest mast must be zere. Thus the
relation (1-18) becomes

E=F“ (1-20)
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Fin

h

Fig. 1-4. The spectrum of radiation scat-
tered by carbon, showing the unmodified
. line at 0.7078 A oo the left and the shifted

* linc at 0.7314 & on the right. The former is
the wavelength of the primary radiation.

- which yields {1-17) when we substitute E = fr. Onpe may also derive (1-20)
from consideration of the energy and momentum of an electromagnetic wave,
but the analogy argument is simpler.

Coasider, now, a photon with initial momencum P, incident upon an
electron ar rest, Afrer the collision, the photon momentum is p’, and che electton
tecoils with momentum P. Conservation of momentum yiclds {Fig. 1.5)

r=p+P {1-21)
from which it follows that
: | PP=(p—p)=p+p?-—2pp (1-22)
Enerpy conservation reads
hr + met = h' + (mid 4 Py {1-23)

whete m is the electron rest mass, Hence
m' 4 P = (R — b+ mad)?
' = (l ~ WP + 2m(hy — b/} + micd
On the other hand (1-22) may be rewritsen in the form
e () () o
E ¢ [

[
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Fig. 1-%. Kinemarics for Compton effect.
that is,
Pl = (w — W)+ 2(hw) (W) (1 — cos 8) (-124)

whene # is the photon scactering angle. Thus
her'(1 — cos 0 = mc (v — )

or equivalentdy
3
W —h=—{1—cost) (1-2%)
me

The measurements of the modified component agree very well with the above
prediction. The unmodified line is presumably due to the scartering by the
whole atoin: if m is replaced by the mass of the atom, the shift in the wavciength
is vety small, since an arom is many thousands times more massive than an
electron. The quantity 4/m¢ has the dimensions of a length. Juis called che
Compton wavelength of the electron, and its magnitude is

3
-— & 2.4 107" cm (1-26)
mé

Measurements of the electron recoil were also made, and these are in agreement
with the theory. It was furthermore determined by good time resolutiof coindi-
dence experiments, thac the outgoing photon and the recoil clectron appear
simulmneously. There is no question of the correctness of the interpretation of
the collision as an ordinary "billiard ball” type of collision, thac is, of the
particlelike behavior of che photon. Since radiation also has wave properies
and exhibits interference and diffraction, we might expect some conceptual
difficulties. These exist, and we shall discuss them at the end of che chapter.
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D. Electron Diffraction

In 1923 De Broglie, guided by the analogy of Fermat’s principle in optics,
end the least-acvion ptinciple in mechanics, was led to suggest chat the dual
wave-patticle pature of radiation should have its counterpart in & dual particle-
wave nature of matter, Thus patticles thould have wave prapesties under cerrain
circumstances, and De Broglie suggested an expression for the wavelength
#ssociated with che particle.!! This is given by

A= X (1-27)
?
where 4 is Planck’s constant, 20d g is the momentum of the patticle. De Broglie's
* work atcracted much attention, and many people suggested that verification
could be obtained hy observing electron diffraction.!? The experimental obsetva.
“tion of this effect oocurred in experiments of Davisson and Germer, who found
that in the scattering of electrons by a cryswl surface, there was preferential
‘scagteting in certain directions.
Figure 1.6 is a simplified picture of what happens. Fa the scatteting of
waves by a periodic’ structute, there will be a phase difference between waves
toming from adjacent scawering “planes,” whose magnitude is given by
{2r/)) 2a sin 8. There will be constuctive interference whenever this phase
etence is equal to 2xw, where  is an integer, chat is, when

_2asin @

(1-28)

‘The interference pattern observed in electron scarrering by Davisson and Germer
could be cotrelated with the above formula, provided the assodiation {i-27) was
made. ‘This vetification constituted a major step in the development of wave
saechanics.

; The particle difffaction experiments have since been camried out with
maleculas beams of hydrogen and helinm, and with slow neuttons. Neutron
diffraction is particularly useful in the study of crystal structure, To get a rough
idea of the kind of enctgics needed for the diffraction experiments, we nore
that the arystal spacings are of the order of Angstroms. The grating constant in
the Davisson-Germer experiment, in which nickel was ased, was 2 = 2.15

-~ Heoce ) is of the order of 107® om, so that p = £/A 22 6,6 X 10~ gm cm/sec
~ Thus for electrons the kinetic enetgy is p%/2m. = (6.6 X 10 1/

1 Chapeer 2 contains 2 discussion of wave packets in which the De Broglie relation
emerges as & very plaosible result. *

" The history of the verification of De Broglie's conjecture can be fouud in fammer,
The Conceptual Development of Quanium Mechanivs,
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Fig. 1-6. Schemaric drawing of electron scamtering

(2 X 0.9 X 10~ =2 2.5 X 107'° ergs, and for neutrons the kinetic energy is
Porome = (mefmn) X (electron energy) = (1/1840). ¢ 25 X 107" ergs =
1.3 X 10" ergs. In terms of the more convenient electron volt, these energies
ate approximately 160 &V and 0.08 eV, respectively.

" On a macroscopic scale, the wave aspects of paricles are beyond out
ability to observe them. A dropler 0.1 mm in size, moving at 10 am/sec. will
have a De Broglie wavelength of A = 6.6 X 107974 X 10782216 X 107™ cm,
Since the "'size”” of 2 proton is about 107 em, clearly there is no way in which
the wave propetties of an object of dimensions significantly larger than 10~ cm
can be observed. As for the particle properties of radiation, it is the smallness of
b that determines the classical properties, in the sense that the dual aspects
become appasent only when the product of momentum and dimension is of the
order of 5. We shall see that the formalism of quantum mechanics deseribes the
situation very well.

E. The Bohr Atom

Expefiments catried oot in 1908 by Geiger and Marsden on the scattefing
of & particles by thin foils showed significent large angle scactering, towmlly
inconsistent with expectations based on che Thomson mode] of the arom,
according to which electrons wete embedded in a continuous disttibution of
positive charge. Rutherford proposed a new model that accounted for the data:
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all of the positive charge and essentizlly all of the mass of the atom were coa-
centtated in a region that is small compared with the dimensions of the atom,
that is, in the #uclews of the atom. The electrons, attracted to the puclens with a
1/7 fotce, traveled in planetary orbits about it. Although the model exphined
particle scatteting quantitatively, it faced two insuperable difficulties. Since it
implied a periodic motion fot the electrons, it could aot account for the spectra
of radiation from aroms, which did not have the expected harmonic structure «
(cf. 2 vibrating string), but inscead had the scructure

' o (- )
\ = const. v (1-29)
whete #; and »: wete integers. 1t also lacked a mechanism for stabilizing atoms: |
an clectran in a citcular or elliptic orbit is constantly accelerating, and according
to electromagnertic cheoty, should be radiating. The constant foss of energy
:, would, within a very short time, (of the order of 169 sec) lead to the collapse
" of the atom, with the electrons plunging into the nudeus.
Just two years after this model was proposed, Niels Bobr in 1913 advanced
& scries of postulates, which, while sharply breaking with classical theory,
explained the spectral sttucture and bypassed the seability problem. Boht
proposed that:.

L. The electrons move in orbits rescricted by the requitement that the
@agular momentum be an integral multiple of b/2x, that is, for circular orbics of
sadius r, the electron velocity » is restricred by

wh

mer = — (1-30)
r

aad furthermore the clectrons in these orhits do not radiate in spite of their
oeeleration. They were said to be in stationary states.

. 2. Electtons can make discontinuous transitions from one allowed orbit to
nother, and the change in energy, E — L' will appear as radiation with frequency

E;E . (1-31)

¥ =

. Ao atom may absorb radiation by having its electons make a cransition 1o 2
" higher energy orbit. '

The consequences of these postulates are very simply deduced for one-
eleczon acoms such as hydrogen, singly ionized helium, &nd so an, if we deal
with the circular otbits.!* If the nuclear charge is Zgand that of the elecron is

13 When elliptics] orbits are "zllowed, 2 much richer siructure emerges. This will be
discussed in Chaprer 12
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—e¢, and if the radius of the orbit is », then, taking the nuclear mass to be infinite,
we balance the Coulomb force against the centrifugal force :

Ze2 gt
= =i 1-32
e p (1-32)
This, when combined with (1-30) leads to
2xe*Z
= —— 1~
I3 - {1-33)
and
1 %%k
= — 1-
r 42 Zetm (1-34)
The energy is
Z2 2V T
E=imt— 2= (1-35)
r

hin?

which, by postulate (2} immediately leads to the general form (1-29) (Fig. 1.7).
Before evaluating these quantities to obtain an ides of theit magnitude,

we will introduce some notstions thac will be very uscful. First of all, it is £/2r

rather than # that appeats in most formulas in quantum mechanics. We thercfore

define

3
= = 1.0543 X 1037 erg sec (1.36)

To keep the expressions for the energy simple, we shall deal wich the angular
frequency w, tacher than », where

w = 2mw (1-37)
Thus (1-31) teads
E-FE
W=~ (1-38)
Similatly, the quantum of radiation carrics energy
E = fuw (1-39)

It is convenient to introduce the “reduced wavelength”

A= (1-40)

L
2x - w
so that the De Broglie relarion reads

s= (1-41)

> | N
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. Fig. 1-7. Spectrum for hydrogen ztom as derived from Bohr atomic
model. The existence of the quantum numbers £ emerges from a discussion

_of elliprical otbits. The lines connecting enetgy levels represent the domi-
Dant ATOmMIC CANSITONS.

‘The Bohr angular momentum guuntization condition reads
mor=nk(58=1,23...) o (1-42)
It is also very convenient 1o introduce the dimensionless *fine structure constant”
e? 1 *

" he  137.0%88 (1-43)
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which we will approximate by 1/137. In tetms of these quzntitiefs we find the
much simpler expressions

v _ Ak @
P f-Za e Q-
and
{Za)’
E=—bnd % (1-45)

Notice thar the radius, which has the dimensions of & lengrh, is written in terms
of #/me, the reduced Compton wavelength of the electron, and that che energy
is written in terms of me® In all atomic calculations we shalt express our results
in terms of me?, i/me, B/mc?, and me for energy, length, cime, and momentum,
respectively. Angulat momenta will always appear as multiples of .

Let us now calculate some of the quancities that emerge from the Bohr
theaty. We calculape :

mel 22 0.51 X 105 eV
22 (3,51 MeV

R
— =39 X 107% cm
;i

i
— = 1,3 % 107! ser (1-46)
wmet
and thus obtaia
{2} the radius of the lowest {# = 1) Bohr othit is
137 & 053 ¢
=23
Z me Z

do = (1-47)
{b) the binding enecgy of the electron in the lowest Bohr otbir, that is, the
energy required to pur it in a state with E = 0 {cottesponding to # = @) is

E = imc (Za)® = 13.6Z2 eV (1-48)

Thus, for example, 2 cransition from the # = 1 stte to the # = 2 state in hydro-
gea (Z = 1) corresponds to a change in energy of 13.6 (1 —}eV=102eV
The frequency of the emicted radiation can be calculared by converting this into
ergs, but it is mare convenient 1o work this our in the form

mela?(l — 1) 3ot 1

= = =T — 1ad/sec
“ 2 8 13X 100

a2 1.5 X 10" rad/sec
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Equivalently

€ 16z k
A=2w— = ——

w 3o mir
221200 &
which Fes in the ultravioler.
The success of the Bohr theory with hydrogenlike atoms gave great
impetus to further reseatch on the “Bohr atom.” In spite of some extracrdinary
achievements by Boht™ and others, it was clear that the theory was provisional.
Ir said nothing about when the electrons would make their jumps; alse che

 quantization tule was restricted 1o periodic systems; a more general statement,
by Sommerfeld and Wilson,

[rdg=m (149)

<losed
ath

whete p is the momentum associated with the coordinate ¢, was of no help in
treating problems other than those associated with atomic fevels of hydrogen,
-From the Bohr theory emérged:

L. The corsespondence principle, which, in essence states thar classical physics
fesults should be contained as limiting cases of quantum mechanical resulss.
he Jimir should be teached when the “"quantum numbers” are lazge, for ex-
ample, for large # in the Bohr atom. Once 2 consistent theory of quantum
fh:nomena_ was comstucted, it antomarically contained classical physics as a
limit, but the principle was very helpful in guiding theoretical guesses, and led
;Heisenberg ta the point from which he could make his giant leap to quantum
acchanics. To illustrate how the correspondence principle is satisfied by the
ohr atomic model, consider the frequency of the radiation emitted when an
ectron makes a “jump” from the orbit with quantum number z + 1 to the
thit with quantum number , when # is very ltge. This is 2 good dopmin to ask
ot sbe classical limit, since the angulat momentum wf is indeed much larger
2n K. Classically an electon moving in 2 circular otbit with velocicy » would be

xpected to radiate with the frequency of its motion, thar is,

M ﬁi_@ﬂ_@&zi (150)
T e = 2t 2h

On the other hand, the frequency of the radiation associzred with the cransition
15, eccording to (1-31),

w 1 me2 1 1
= > o r - ¥ N
T 2efi 2 (Za) [z’ (,,-5.1)2:' (1-51)

" 5ce 8. Rozental (¢d.), Nily Bebr, North Holland Publishing, Amsterdam, 1957,
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which approaches . far n 33> 1. Note thar this is a significant result, since ir is
only the frequency associated with an z + 1 — # transition that corresponds o
the fundamental classical frequency. The tadiation associated with the jump
# =+ 2 — % has no classical counterpast even in the large # limit. We shall see in
Chapter 22 that there ate no # + 2 — # transitions for “circulat otbits” in
quantum mechanics.' )

2. The quantization of angular momentum held in other situations as well.
Tes application to elliptic orbits gave a more complete picture of the specturm of
hydtogenlike atoms, and it was ditectly observed in the experiments of Stern
and Getlach'® in 1922.

F. The Wave-Particle Problem

The fact that radiation exhibits both wave and particle propefties raises 3
deep conceptual difficulty, as can be seen from the following considerations:

1. Our discussion of the photoelectric effect, in particulat the comelation
of the number of electrons emitted with the intensity of the radiation, strongly
suggests that the intensity of elecromagnetic radiation is proportional to the
number of photons emitted by the source. Let us now consider a Gedenken-
experiment™ in which fadiation is diffracted by a rwo-slit system. Imagine that
the intensity of the soutce is reduced 1o the point where, on the average, one
photon per hout arrives at the screen. Note that we have to deal with entire
photons: as the Compton effect a3 well as the photoelectric effect show, it is not
possible to split 2 photon into parts with frequency o but energy bess then fu.
The deczease of intensity in the incident radiation should not affect the classical
diffraction pattern, since, in cffect, we are oaly strerching out the time scale on
which the tensmission from the source to the photographic plate of 4 large
number of photons takes place. Photons thar come to the plate an hour apatc
clearly cannot be cotrelated, and we may therefore think about this process one
photon at 2 dme. A photon, g5 a paricle, will presumably go through onc slit or
the othet. If we add to our Gedankepexperiment apparatus a small monitot that

16 Such transitions can oecur for elliptical orbits (ot considered here), and this is
consistant with che correspondence principle.

18 These mareees are discussed i any texbook in modem physics (sze references a
the end of this chapter). '

1 A Gedanbenexperimens (thought experime) is one char may be imagined, thae is,
one that is consistent with the known laws of physics, even though it may not be tech-
nicafly feasible, Thus, measuring the acceleration due to- gravicy on the sutface of the sun
is ¢ Gedankenexpetiment, whereas measuring the Doppler shift of sunlight as secn from 2
space ship moving with twice the velocity of light is nonsense. In Chapuer 2 we shall see
how careful one must be To insist on consistency with the laws of physics in serdag-up a
Gedankenezperiment.
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tefls us whether rhe photon went through slit “1”" or slit **2,”" we can divide che
photons into two classes, associated with the two shits, For the first class, we
could have closéd down slit 2, since the photon did not go through it; for the
second class we could have closed down skit 1. We might thus expect that the
patietn on the photographic plate should be the same if we repeated the experi-
ment with one slit closed for half che cime, and the other slit closed for the other
half of the time. This, hawever, cannot be, since the second experiment does not
give an incerference pattern. Thus there is an inconsistency that will be (raced to
the assumption that che presence of the monitor rhat tells us which slit the
photon went through does not affect the experiment, When we discuss the
Heisenberg unceriainty principle, we shall see chat the accion of the monitor desttoys
the interference pattern, 50 that there is no inconsistency, At this srage it is
sufficient to point out that when there is no monitor, each photon acts as a
wave, apd it does not make sense to ask which slit the photon went through.
Presumably, we can still speak of an average incensity of radiation at each slit:
this must mean that for individua] photons we can only speak of a probability of
going through one slit or another.

2. The notion of probability must again be invoked in understanding the

ssage of polarized radiation theough an analyzer. As is well known, 2 beam of
idiation of incensity Jo will be attenusted 0 1y cos? o, whete « is the angle
veen the axis of the polarizer and that of the analyzer, In tetms of single
ons thac are jndivissble, such an attenuation is only explainable if we stare

2 given photon will either go through or be blocked by the system, with a
bability of transmission governed by the construction of the apparatus,
t is, by the angle o,

3. In che same way, consider radiacion fram a distant star. The scar is che
urce of a spherical weve of electromagnetic field exciration, spreading with
welocity ¢. In cerms of individual photons it is not seasible to think of the
aten as spread thinly ovet & sphere of radius o (where 7 is the time since the
oton. was emitted), since the collapse of that photon 1o a single point on &
otographic place, of on the retina of the eye, would violate common sense, if it

¢ “teally"” happening. We may however interpeet the spherical distribution as
ving us the probebility of finding a photon 2t 2 given solid angle.

4. Sometimes it is possible o intipret a given experiment both in
erticle and in wave language, but then a nonclassical aspect creeps in elsewhere,
icke and Wittke!* have proposed the following Gedankenexperiment (Fig.
8).-Consider a cylindrical bitd cage with the bars spaced regularly, and spacing

;z=21r? ’

E + ¥R, H. Dicke and J. P. Witl:l:e, introdeciion 14 Quantum Mechanic, Addison-Wesley,
. Reading, Mass., 1960.
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Fig. 1-8, Ead view of Dicke-Wircke “cage” showing
equally spaced bars and geometrical quanrities con-
necred with it

where R is the madius of the cylinder and N is che number of bats. Consider
radiation emitted from a source placed on the axis of the cylinder. The bars act
as a diffiaction grating. If the beam emerges at an angle @ with the original
ditection, we have maximum intensity if the angle and the wavelength are
related by

gsind@=m {(p=123 ...
thar is,
2xR sin @

A= (1-52)

We could also interpret the intensity peak by assuming chat the particles scattered
through an angle & off the bars of the bird cage. The momentum transferred to
the cage is p sin # and hence the angulac momentum tansferred o the cage is

L= pRsinf (1-5%)
If we now make the De Broglie assodiation, p = 2#fi/h we obrain

2nhiNg
= 2 psind = Nnb 154
IRsind o g (134)

that is, angnlar momentum is quantized! The factor N is associared with the facr
that the bird cage looks the same when it is rorared through an angle 2n /N, as
will become cleat later.
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in 1925 the modetn theory of quantum mechanics starred with the work of
Heisenberg, Botn, Jordan, Schriidinger 2nd Dirac, This theoty provides a way of
reconciling all of the conflicting concepts at the cost of making us abandon a
cetrain amount of classical thinking. It is one of the joys of being a student of
physics to be ahle co appreciate this beautiful theory and the monumental
advances in our understanding the properties of matter that the theory enabed
us 10 make.

Problems

1. Prove the relation (1-1) between the energy density in a cavity and the
- emissive power. [Hnt. To do so, look at the figure. The shaded volume slement

&4

-is of magnitude 12 gr sin # H 4 = 47 where r is the distance to the otigin (at
the aperture of area dA), § is the angle with the vercical and ¢ is the azimuthal
angle about the perpendicular axis through the opening. The energy contained
i the volume element is 4 multiplied by the energy density. The radiation is
isouopic, 5o that what emerges is given by the solid angle 44 cos 8/4x+* multi-
Plicd by the energy. This is to be integrated over the angles ¢ and # and, if the
flow of radiation in time Ar is wanted, over &r from 0 jo car—the distance from
which the radiation will excape in the given time inretval.]

2. Use (1-1) and (1-12) w'obmin a formula'for the rota] rate of radiation
per unit area of a hlack hody. Assume that the sun radiates as a black body.



24 Quantum Physics

You are given the radius of the sun Ry = 7 X 107 cm, the average distance of
the sun to the earth dg = 1.5 X 10 cm, and the solar constant, the amount of
enetgy failing on the carth when the sun is overhead 1.4 X 10% ergs/cam® sec.
Use this informarion to estimate the surface temperature of the sun.

3. Given (1-9), calculate the energy density in & wavelength interval
A\ Use your expression to calculate che value of X = Mqax, for which this
density is maximal. Show that Ans is of the form b/T, calculate &, and use your
estimate of the sun’s surface temperature to calculate dmax for solat radiation.
[#int. In calculating b you will need the solution x of the equation (3 — x) =
5¢-=, Solve this graphically or by a successive approximarion method, in which
you first wiite X = 5 — ¢ with e K 1]

4. How much of the sun’s energy is radiated in the range of wavelengths
5000 A-7000 A? Use the T estimated in problem 1. Piot the enerpy densiry on
graph paper to obtain the numerical result.

5. There is some expetimental evidence that the universe contains black
body radiation corresponding to an equilibrizm temperatuce of 3°K. Calculate
the energy of 2 photon whose wavelength 18 Amax comesponding to this em-
petature,

6. Ultraviolet light of wavelength 3500 & fulls on a potassiom surface.
The maximum energy of the photoelectrons is 1.6 eV. What is the work function
of potassium?

9. The maximum energy of photoelectrons from afuminum is 2.3 €V for
radiation of 20004 and 0.90 eV for radiation of 3130 A Use this data to calculate
Planck’s constant and the wotk function of aluminum.

8. A 100 MeV photon collides with a proton that is at zest. What is the
maximum passible enetgy loss for the photon?

9. A 100 keV photon collides with an electron at cest. 1t is scatrered
through 9¢°. What is its energy after the collision? What is the kinetic energy in
&V of the electron after the collision, and whac is the direction of its recoil?

10. An electron of enetgy 100 MeV collides with a photon of wavelength
3 X 107 A {corresponding to the universal background of black body radiation).
What is the maximum energy loss suffered by the electron?

11, A beam of X rays is scattered by clectrons at test. What is the energy of
the X 1ays if the wavelength of the X rays scattered at 60° to the beam axis is
0.035 A?

12. A nitrogen nucleus (mass = 14 X proton meass) emits a photon of
enctgy 6.2 MeV, If the nuclevs is inirially a¢ rest, what is the recoil enetgy of the
pucleus in eV?

13, What is the DeBroglic wavelength of (a) 2 1 ¢V clecuon, by a
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10 MeV proton, (c) & 100 MeV clectron? {cantion! use the relativisric encrgy
formula), (d) a thermal neutron? (defined as a neutren whose kinetic energy
is 36T/2 with T = 300°K).

14, Consider a crystal with planar spacing 3.2 A. Whar oeder of magnitude
of energies would one need for (a) electrons, (b) helium nuclei {mass 2= 4 X
£ proton mass) o obsetve up to 3 interference maxima?
15. The smallest separation resolvable by a microscope is of the ordet of
 magnitude of the wavclength used. What energy electrons would one aeed in
an electron microscope to resolve separations of (a) 150 &, {b) 5 42
16, If one assumes that in a stationary state of the hydrogen atom the
. clectron fits into a circular orbit with an integtal number of wavelengths, one
can repraduge the results of the Bohr theoty. Wotk this our.

17. The distance between adjacent planes in a crystal are to be measured.
IEX rays of wavelengeh 0.5 A are detected at an angle of 3°, what is the spacing?
At what angle will the second maximum occur?
_ 18. Use the Bohr quantization rules to calculate the enetgy levels for a
. hanmonic oscillator, for which the energy is p*/2m + mw?r/2, that is, the
force is ma’r. Reswrict yourself to ciecnlar orbirs. What is the analog of the
Rydberg formula? Show thac the corespondence principle is satisfied for all
wilues of the quantum number # used in quantizing the angular momenrum,

19. Use the Bobr quantization rules to calculate the energy swaces for o

tential given by
&
ViR = Vo (f)

with & very large. Sketch the form of the potential 2nd show thar the energy
lues appreach E, =~ Ca?,

) 20. The power, that is, the energy radiated by an accelerared chatge & is
classicaliy given by the formule :

where @ is cthe acceletation. In a circular otbit & = vy, Calculate the power
nadiated by an electron in a Bobr arbit characrerized by the quantum number .
When # is very large, this should agree with a proper quantum mechanical
result according to the cotrespondence principle.

21. The decay rate for an electton in an othit may be defined to be the
power radiated, P, divided by the encigy emitted in the decay. Use the Bohr
¥ theory expiession for the encrgy radiated, and the expgession for P from problem
g 20 to calculate the “'correspondence™ value of the decay rate when the electzon
I makes a tansition from othit #”to orbit # — 1. What is the value of chis decay
© tate when n = 22 (This will not agree exactly with the true quantum theary
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tesult, since the cotrespondence principle will not hold for such small values of
the quantum number.) What is the decay rate when the trapsition is from an
otbit 1 to a0 othit # — m? What is the lifetime = (decay rate)—1?

22. The classical energy of ¢ plane rowaror is given by

E = Ly2f

where L is the angular momentum and [ is the moment of inettia. Apply the
Bolu quantization rules to obrain the energy levels of the rotator. If the Bohe
frequency condition is assumed for the tadiation in transitions from states
labeled by m, to states labeled by #s, show that (2) the correspondence principle
holds, and (b) chat it implies that only transitions Az = -1 should occur.

23, Molecules somertimes behave like rotators, If rotetional spectra ate
chatacterized by mdiation of wavclength of order 107 A, and this is used to
estimate intetatomic distances in a molecule like Ha, whae kind of sepatations
{in &) are obtained?
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chapter 2

Wave Packets and
the Uncertainty Relations

Quantum mechanics: provides us with an understanding of all of the -
phenomena discussed in Chaprer 1. It is indispensable to the uaderstanding of
atoms, molecules, atomic nuclei, and aggregates of these. We will approach the
" study of quantum mechznics through the Schrddinger equation and the appro-
.- priate intefpreration of its solutions.” Thete is no way of deriving this equation
from dlassical physics, since it lies outside the realm of classical physics. It can
only be guessed, which is whar Scheddinger did, following che catlier insights of
De Broglie. We will motivate the guess somewhat differently, by seeing how one
might uy to reconcile the wave and patticle propetties of electrons.

. Irs difficuls to think of configurations of particles that somehow simulate
i ‘wive behavior, This is why the difftaction experiments of Fresnel and Young led
t0 the unanimons acceptance of the wave theoty of light. On the ocher hand, it is
possible to imagine configurations of waves that are very localized. {A clap of
. thuader is an example of a superposition of waves Jeading to an effect localized
© in use.} Such tbcalized “wave packets” can be achieved by superposing waves
- with differenc frequencies in a special way, so that they interfere with each other
almost completely outside of # given spatial tegion. The technical tools for
doing this involve Foutiet integrals, and Appendix A summarizes them for the
. tegdet who is familiar with Fourier series and who does not insist on mathe-
marical rigor, '

As an example, cansider the function defined by

fix} = f” dk g(k) e““; (2-1)

e :
L A different approach can be found in B, P. Feynman, R. B. Leighton, and M. Sinds,
The Foynman Lecrures ar Physia, Vol. U1, Addison-Wesley, Reading, Mass., 1964,
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"The real parc of f(x) is given by f T & g(&) cos kx, and this is o linear super-

position of waves of wavelength » = 2x/k, since for a given & the wave tepro-.
duces itself when x changes to x + 2«/k. '
Choose

é(é} = otk (2-2)

The integra) can be done: with £ = & — &y we have
fix) = f dk glk) ¢ R)E gk

’ =3
= ikt f db e= et

-

@
— ¢ f A ol —Gimpal® g (a'ide)

—m

where in the last stcp we have completed squares, It is justified to ler & —
(ix/2a) = 4 and still keep the integeal along the teal axis,? Making use of

f dbee = T {2-3)

—m o

flx) = \/;Eu,; e ' (2-4)
ox

The factor ¢+ is known as a "phase factor,” since j¢+*|* = 1. Thus the ahso-
Lace square of f(x) is

- we gbtain

)iz = T | (2-5)

This funcrion shows a peaking that can be very ptonouaced when a is chosen to
be small. It tepresents a function localized about x = 0, with 2 width of the
order 2+/ Zer, since when ¥ = + 4/ 2a, the function drops off o 1/e of its peak
value, The width in x-space is cotrelated with chat in £-space. The square of g(k)
is a function peaked about ky with width 2/+/2a. There is a reciprocity here:
a function serongly localized in x is broad in £ and vice vetsa. The product of
the two "'widths” is
.2
akAxfuv,z_ﬂ 2¢4/2a = 4 (2-6)

2 The reader familiar with che theory of complex variables will have no trouble con-
vincing bimsclf of this.
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The actual value of the numetical constant is not important; what marttets is
that it is independent of «, This is a general propesty of functions that ase Fourier
mansforms of each other (Fig. 2.1). We represent it by the formula

Ax Ak 2 O} {2-7)

‘where Ax and A are the "widths™ of the two distributions, and we imply by
O(1) that this is a number that may depend on the functions that we are dealing
with, buc is not significandy smaller than 1, it s imporsitle to make both Ax and Ak
meafl, This is a general fearure of wave packets, but we shall soon see that it has
some very deep implications for quantum mechanics.

~ 1a Eq. 2-1 we considered a function f{x) thet is made up of a continuous
superposition of simple waves ¢*=. How will such a wave packet propagate in

£lke}

nam

(L]

a)

fix)

N« N/

Fig, 2-1. Relation between Wave packet and its Fourier transform for 2
square-shaped wave packet.
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time? The answer to that depends on how the individual waves propagate. In
geaeral we shall write for the simple plane wave (so called because it onlp has a
spatial variation in x, but not i 3 or z) the form

gika—iat (2-8)

Here w = 2wv is the angular frequency. The quantty £ is related to the wave-
‘length by £ = 2w/:s0 that we may wiite for the simple wave anather form

FArillefh)—rl) {2.9)

If we are consideting the propagation of a light wave in 4 vacuum, then there is
2 simple relation between ‘vand 1/, mamely, » = ¢/\, so that the simpic wave
becomes

girita—ct}} = giklz—et]

If we now take the supetposition, with amplitude £(#) of these simple waves, we
pet, at time £,

flx, ) = f;dé k) 2o = flx = @) (2-10)

This is the same shape that we stasted from, except that instead of being localized
ac x = 0, it is now localized at x — ¢ = 0. Thus a wave packet of light waves
propagates without distortion with velocity ¢, the velocity of light.

We, however, ate concerned with waves that are supposed to describe
particles, and we may not, therefore, require that w = k¢, In general w will bea
funcrion of &, so that

f(x':) = fdk g(é} gibr—ia (k) ’ .(.Z;U.)

For the titme being, we do not know what the form of w(k} is, but we shall try to
determine it from the requitemenc that f{x.) resemble a freely moving ¢lassical
particle. :

Let us consider 2 wave packet that is soongly loalized in k-space, about a
value £, This would correspond to 2 choice like (2-2) with a large. It is true
that this will not reptesent an f{x) sharply localized in x-space, but cur calcule-
tion will be easier, and we ate, after all, still trying to make intelligent guesses.
Since che inregral in (2-11) will center around & = &y, we expand w(£) about By
and assume that w(#) is not a very rapidly varying function of £ Thus we wiite

(k) = (k) + (& — k) (%:) +le- w(ﬁ‘:)h @12)

Then, using the form (2-2) for definiteness, and writing & — ko = k', we get

flxg)y = k2 e—.-m_u.;efdéf P L TS oK foLlduidiiat] (2-13}
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Aside from the phase factor in front, the x and  coordinares appear in 1 form that
swongly suggeses that the velocity of propagation of the packet, the group
selocity, is®

deo.
Yo = (E) N (2-14)
Thus, defining _
1 f &
2 ( e ),‘, =£ (2-15)
we have ™
. f(x,!) = ‘!iutHUt.}t][déi eik'(g'—v) e—fﬂ"‘iﬂ"lk" (2-]6)

This is just the integral that led to (2-4), so that replacing ¥ by x — o, and &
by o 4+ g, we per

142
T ) emite—2 Mtatignn

o + 181

and the absolute square of this funcrion is

flxg) = efthe—otipn (

.‘.2

12 .
) et 217)

sl =
This represents & wave packet whose peak is traveling with velocity #,, but it .

does not have a definite width: the quantity that was & ar + = 0 now becames
a + (8% /), that is, the packet s spreading. Since the width is proportional to

2y 12 23
(=i

the rate of spreading wili be small if @ is large, that is, if the packet is spaially
large o begin with.

X The most important sesule is that if (2-11) is to tepresent a patticle with

momentum p and kinetic enctgy p2/2m, then we must require thas

Ao #

P

Vg =

{2-18)

* This is certzinly in agreement with what we found in the special case of light propa-

Egation, where @ = ke The argument used more generally dpends on the fact that the peak

of a packet will tend to be where the phase dx — wrhas a minimum as a funesion of #&, thaz iy,
: i .

h do i 4]
Bre X — —r— = [J),
¥ P
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If we further make the association that _
E=fo (2-19)

suggested by the quantum selation for rdiation, so that

= = 2-20
7 2mh (220)
then consistency demands that we make the association
2 ?
k= _—="_ -21
z- 1 @2
first derived in a somewhat sitilar way by De Broglie.
In rerms of p, the expression (2-11) can be rewritten in the form
1
= 1 u Alpe—EO 2.2
W) = iz [ o (2:22)

The wave packet  (#,f) is a general solution of the parciel differential equation

= i [ oipr mecomron

- \/Ez-;-—ﬁf@ &) :; gilpr—E0 I
it o
- @)

provided, as we have done ahove, we describe the mocion of the “particle™ 1n 2
portential-free tegion, whete E = p?/2m. Itis this equation, and its generalization
to the case of a parcicle moving in a potential, thac represents the. impostaar
abstraction from the arguments outlined above. It should be suessed that the
equation represents a guess: there was no justification on the basis of clasical
. physics for the replacement of w by Ef#, nor for the replacement of the wave
" pumber £ by p/F.

We must still face the difficulty of the spreading of the wave packets, If we
comsider a Gawusian packet (2-17), we see that no macter how large o is, there will
be 2 time when the spreading will become noticeable. This is in contradiction
with expetience, which shows very dearly that nuclei, for example, that are very
tiny, have not changed during & period of 3 X 10? years {10% sec). We shall see
in Chaper 3 that the notions of probability, hinted at in Chapter 1, play a tole
hete, and the spreading really refers to a growing probability chat the particle is
far from where it was localized ac ¢ = 0.

One of the most important qualitative cbservations that we made in our
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wave packet discussion is the reciprocity selation between the widths in x- and
k-space

AkAx =2 1 (2-24)

If we n;liyltiply this by & and use ££ = p, we obtain the Heisenberg uncertainey
rclations :

ApAx A (2-25)

Since the width represents a region in which a particle is likely to be in x-space of
in momentum space, (2-25) states that if we try to construct a highly localized
wave packet in x-space, then it is impossible o associzte a well-defined momen.
tam with it, ic contrast with what is taken for granted in classical physics. By the
same token, a wave packet characterized by a momentum defined within natrow
limits muse be spatially very broad. This limitztion is one that is imposed on the
chssical description, which insists on being able to specify both position and
momenrum. In quantum physics position and momentum, just like patticle
behavior and wave aspects of a system, are complementary properties of the
system, and the theary does not admit the possibility of an experiment in which
both could be established simujtancously. The smallness of # guarantees that
only for micrascopic systems will the usual notions of classical physics fail. For
example, for 2 dust particle of mass 10~ gm moving with a velocity of 100
‘emn/sec with an uncerinty in the product of one. part in a million implies
Ap ~ 107*and thus Ax ~ 10~ cm, which is 107 times smaller chag the radjus
‘of a proton! This is not so for an electron in a Bohr orbit, It we take Ap rv o
- mcar/n, then Ax ~ fin/mce, of the order of magnitude of the radii of the orbits.
. In what follows we will discuss a number of Gedankenexperiments in
-which we will show in deuil how the wave-parricle duality acts to conspire 1o
- prohibis a violation of the relation (2-25).

(8) Measwrement of position of an slectron. Consider the expetimental set up
in Fig. 2.2, whose putposc is to measure the position of an electron. The elec-
tons are in a beam having well-defined momentum p, and moving in the pasitive
x direction, The microscope {lens + screen) is to be used to see where the elec-
kon is located by observing the light dhat is scattered off the electron. We shine
light along the negative x-axis; 2 particular electron will scatter a particular
photon, and the larter recoils through the miceoscope. The resolution of the
micrascope, that is, the precision with which the electron can be localized is
koown from optics. It is

Ao~

sin é (2-26)
L3
whete X is the wavelength of the lighr. -
It would appear that by making X small ¢nongh, and by making sin ¢ large, Ax -
can be made as small as desired. This, we will now show, can only be done at the
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Fig. 2-2. Schematic drawing of the Heisenberg mictosocpe for the
measurement of electron position.

expense of losing information about the x-component of the electron momen-
tum. Quantum theoty tells us chat whar registers on the scteen behind dhe lens
ate really individual photons thac got there because they scatrered off the elec-
crons. The direction of the photon after scattering is undecermined within the
angle subtended by the aperture, Heace the magnitude of the recoil momentum
of the electron is uncertain by '

ke
Ap,~2— sing (2-27)
¢
Hence

h P
Bpedx ~ 2% sin ¢ - ~ 4k (2-28)
¢ sin ¢

Can we get around this difficulty? After all, the direction of the photon is.
correlaced with its momentumn, and if we could somehow measuee the gecoil of
the screen, we could specify the photon {and heace electron) momentum better.
True, but once we include the microscope as part of the “obsetved’’ system, we
must woiry about its location, since its momentum is 1o be specified. But the
mictoscope, too, must obey the uncenainty relarion, and if its momentum is to
be specified, its posicion will be Jess determined. The final “classical™* observation
apparatus will always be faced with the indeterminacy.

(b) The iwo-sift experiment. In Chapeer 1 we suggested that che interference
pattern observed in the passage of &0 electron? through two slits was logically

1 We actually discussed phowens, but the dificulry is the same for electrons, which
are also diffracted.
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incompatible with our being able to know which slit the clectron went through,
as such knawledge would imply that the partern is a superposition of electrons
~coming from one slit or the other. This, however, cannat give an intetference
© pattetn. We may use the oncerinty relation to show thae a “monitor” thac
" identifies the slirs of passage will destroy the interference pattern. Ler the sljes
be separared by 2 distanice 2, and let the distance from the slits to the screen be 4.
The condition for consetuccive intetference js

. A ' '
sind =g~ {2-29)
% .

s0 that the distance berween adjacent maxima on the screen is o sin B —
dsin 6, = dhja. Considet, now a menitor that determines the positicn of an
electron jusc behind the screen o an accuracy &y < 4/2, that is, it tells us which
slie the electron went through (Fig. 2.3). In deing so, it must impart to the
electron 2 momencutn [n the ¥ direceion whose amount js imprecise, with

h
Apy > 27 (2-30)
Hence
Ap, 2 h A
VS @30

Such an vncerninty introduces an indeterminacy in the position of the eleceron at
the screen, whose magniude is 2rd/z, ac the very lease. This, however, is larger

Monitoring
System

Eource Og a /
L o
. 3

Slit Detecting

scr:en sereen

Fig. 2-3. The rwo-slit experiment with monitor.
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than the spacihg berween maxima, so we conclude that a working monitor will -
wipe out the interference pattetn, and there is no logical contradicrion. Con-
versely, we could, of course, atgue that logical consistency demanded that

Ap, Ay > h {(2-32)

(Q) The realisy’ of vrbits in the Bohr arom. As noted in Chapeer 1, che Bohr
atomic mode! deals with orbits whose radii are given by R, = Fn*/ome. Thus 2o
experiment designed to measufe the outlines of a given orbit must be such thata
position measucement of the ekectron in the atom is done with an accuracy

. (233

2in
Ax & Ry — Raa 2=
472
This implies an unconuollable momentum trapsfer to the electron dhat is of
magnitude Ap > mea/2n. This implies an uncertainty in the energy of the
electron of magnitude _ .
mie a1 mi'a?
PV SRR (2:34)
» n m 2 ®
that is, much larger than-the binding of the electron in the orbit. Thus such a
measurement, as likely as not, will Lick the electton out of the orbit, so that no
such mapping of the otbit i possible.
(d) The energy-time unctrfaingy relation. 1f we take the relation (2-25) and
write it in the form

w p
we may interpret the firse factor as a measure of the uncerrainty in the energy of
the system, and the second factor, Ax/v, as a measuts of AL, an uncertainty in its
locakizability in time. This suggests the enetgy-time uncereinry relation

AEM TR ' (2-35)

Such a relation might also be deduced from the form of the wave packer (2-22)
since E and # appear in the same reciprocal relation as p and x, and it is also
suggested by the theory of relativity, since space and time, like momentum and
energy are intimarely connected with each other.® Acrually, in nonrelativistic
quantum mechanics, Space and time play a somewhat different role, and whereas
we shall be able to derive (2-25) from che formalism of quantum mechanics,
this is not rue of (2-35}, Nevertheless the enetgy-time uncertainty relation is a5
much a pare of the qualitative structute of quantum mechanics as {2-25).

s Both (¢r, r) and (Efc, p) are fowr-teciors that teansform among themsetves uoder
Lorensz transformacions.
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In spite of his fundameneal contributices to the development of quantum
mechatics, Einstein always felt uneasy abour its implications, and &t the Solvay
Congress of 1930° he suggested a Gedenkenexperiment that apparently avoided
the limitations suggested by (2-35). Einstein suggested that a box conmaining
tadiation have a shutter controlled by a clock within the box. The shurer
mechanism could be atranged such that 2 hole is opened for an arbitrarily shor:
time Ay, The energy of the photon escaping from the box could be derermined
very accurately by weighing the box before and after the opening of the shurer,

Bohts rebuttal of the argument is a beautiful illustration of the tequire.
meat that a Gedankenexperiment must conform to the Jaws of physics. Taking
inta consideration the apparatus shown in Fig. 2.4, Bohs made the following
points:

1. A weighing impbies the reading of 2 scale poincer with an accuracy Ax,
This implies 2n uncertainty in the momentum of the box givea by Ap = #fifAx.
2. Mz change of mass Am is 1o he detecred, the weighing must take a time

7, that is long enough so that the impulse due to the change in mass, that js,
£T &m (g = acceletation due to gravity) is much larger than Ap, chat is,

gT Am > BfAx (2-36)

_ 3. The well-established eguivalence principle” implies that a change in the
vertical position Ax in a gravitationa! field implics a change in the rate of the
dock, given by

AT g Ax
T = A ' (2-37)
AT g R
T & gT Am
that |5,
Am2 AT = AEAT > % (2-38)

This shows that the eneigy-time uncettainty relation is mainmined,
- The uncerczinty relations may be vsed 1o make rough numetical estimates
‘in mictoscopic physics. Let us illustrate this with several examples, the first of

¢ Scc the beauriful essay by Niels Bohr, " Discussion with Einsteio on Epistemological
. Prablems in Atomic Physics,” which appeared in Atomic Phviics and Humar Kuotoledgs,
John Wiley & Sons {1958). ..
T The equivalence principte is discussed in the Special Topics section 2 at the end of
this book. It is amusing in this context that ¢he principle was formulared by Einseein!
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A

—

.

Fig. 2-4. Quasi-realistic drawing of Einstein experiment designed to show

“viclation of AE &7 > A relation. Reprinted from Niels Boht, Awmic Physics
soid Human Knewledge, Joho Wiley (1038}, by permission of North Holland
Publishing Company, Amsterdam.

which is the hydrogen atom. 1f we say that the electron’s position inside the
atom is unknown, then, if r is its radial cootdinate

pr~f (2-39)
This allows us o cXpIESS the energy in terms of r

s P €
2m r
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it &t '
S @40
The minimum value of the eneegy is obtained from
°°F__®B_ ¢ _,
ar mrt gt
that is,
fi? fi
r=—=— (2-41)
mitex
and the corresponding value of E is
. ) |
E= — > mcte? (242)

The facr that we obrained che exact value of the enetgy is, of course, a swindle,
" since we could equally well have weitten fr~ Binstead of (2-39), and we would
thea have cbmined a different resule. The value of B would, however, have
differed from the correct value only by a numerical constant, and the general
~order of magnitude would still have been the same, The main peint is that in
contzast 10 ¢hssical theory, the energy is bounded from below becagse of the
_uncertainty principle: en increase in the {negative) potential energy, obrained
. by decreasing r, that is, localizing the electron closer to the nucleus carries with
the necessity for increasing che kinetic energy.
As another example, consider the problem of nuclear forces. These have
he range of the otder of one fermi, that is, 10~ ¢m. This implies that p ~ /¢~
1071 gm cmy/sec. The kinetic energy contesponding to this momentum is

AR
2M 32X 107

~ 3 X 107 ergs (2-43)

whete M is the nucleon {proton of nenmon) mass, which is 1.6 3 (o2t gm.
Since the potenrial that gives tise to the binding must more than compensate
for this we require that )

IV ~3X 1675 ergs ~ 20 MeV {2-44)

Again, this is only a rough order of magnitude, but it does indicate that the
potential energy is to be measured in MeV rather than in eV, as in atoms. '

. Yeranothet illustration comes fiom the Yukaws meson theory of nudear
forces. In 1935 Yukewa peoposed thar the nucheag, force arises chrough the
emission of & mew quantum, the pi-meson (also catled pion), by one of the
oucleons, and its absorprion by%the other.? Tf the mass of che quantem is denoted

¥ This is discussed briefly in the Special Topics saction 3 on the Yukawa theory,



40 Quantum Physics

by g, then its emission introduces an coergy imbalance AE ~ ge*, which can
only take place for a time A7 ~ R/E ~ Afus*. The range corresponding to a
parcide waveling for this time is of the order of AT ~ fifuc. i we rake for the
tange ro = 1.4 X 107° cm, then we find that

fic 1077 X3X 100

- e
= 14X s

r~ 130 MeV (2-45)

When the pion was finally discovered, it was found that this estimate -was
temarkably accurate, since for the pion pc* = 140 MeV,

In summary, out tentative attempt 10 wed wave and parucle properties
consistent with expetiment in the mast naive way, has led us to an uncertaincy
in the description of atomic phenomena ac the classical level, apd this un-
certainty is both necessary for a consistent description of (Gedanken) experi-
ments, and in accord with what is observed.

Problems

1. Consider a wave packet defined by (2-1) with g(#) given by

gB =0 &< —K
=N -K<«<k <K
=0 K<é\

(2) Find the form f{x).
{b) Find the value of N for which

[ adptr =
{c) How is this related co the choice of N for which

f " mlemlr= -

—m

(d) Show that a reasonable definition of Ax for your answer to (a} yields

Ak x> 1
independent of the value of K.

2. Given that

-

N
g® =55
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calculate the form of f(x). Again, Plot the two functions and show that
Ak Ax > 1

independent of your choice of a,

3. Consider the problem of the spreading of 2 Gaussitn wave packet for a
free particle, whete the relation

MR
2m

w =

bolds, Use (2-17) to calculate the fractiona) change in the size of the waye
packet in one second, if

(@) the packer represents an electron, wich the wave packet having a size
of 1074 cm; 10~ con.

{b) the packet represents an object of mass 1 gm and has size 7 cm,

Tt will be convenient to expeess the width in units of R/ me, where m is the
mass of the particle represented by the packer.

4 Abeam of electrons is to be fired over 2 distance of 10* km, If the size
of the initial packet is 1 mm, what will be jts size upon artival, if ies kinetic
energy is (a) 13.6 eV, (b) 100 MeV?

(Cantion. The relation between kinetic enetgy and momentum (s not
Iways K.E. = p2/2m1)

5. The relation between the wavelength and the frequency in & wave
/Buide is given by

£

A= e

Vi~
' What s the group velacity of such waves?

. 6. For sutface rension waves in shallow water, the relation berween
‘frequency and wavelength is given by

(Zr 172 ’
= —
oh?

where T'is the surface teasion and p the density. What is the group velocity of
the waves, 2ad its relation to the phase velocity, defined 1o be v, = Ar? For
ravity waves (deep wacer), the relation is given by

r \1/2 F
- (5)
r . iy

- what are the group' and phase velocities?
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7. Use the uncertainty relation to estimate the gtound state energy of a

harmonic oscillator. The enetgy is given by

2
L
E = P_ + = st

C 2m 2
8. Use the value of the “lifetime’’ pf an electron in an # = 2 Bohe obic,
calculsted in Problem 21 of Chaprer 1, to estimate the uncertainty in the
énecgy of the » = 2 encrgy level. How does it compare with the energy of that

level? ’

9. Muclei, typically of size 107*% cm, frequently emit electrons, with
typical energies of 1-10 MeV. Use the uncertainey principle to show that
chectrons of energy 1 MeV could not be contained in the. pucleus before the
decay.

10. The apparatus skeiched below appears o allow a viclation of the
uncertainty relation. The lateral location can be determined with accuracy
Ay ~ 4, and the transvefse momentum of the incident beam cun be made as
smalt as possible by making L arbitarily large. Analyze the zpparatus in detail,
poiat out the hidden assumptions made in the above, and show that rhe un-
cettainty relation is not violated. :

Smru.__.__..__.___...____._.__.*_____.. __________
- L — i
. LL >>d
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cbapter 3

Tbé Scbrddinger Wave Equation

In Chapter 2 we obtained & partial differential equation satisfied by 2
wave packet that, within cermin approximations, described a freely moving
“patticle.” From this point we shell take this equarion

2 QM) B O%(x)
* X 2m o G-

as the correct equation for the description of s free parricle. Inverting the
sequence that led to (2-23), we see that the most geaera] solution of this €quation
is N

Yixg) = \_/lzﬁ f dp ¢(p) pilrz— e ram) i) /A (3-2)

[The reason for the normalization factor in front of the integral appears in (3.26).]

Before tutning to the aucizl point of interpreting the meaning of the solution

¥{x4) of this equarion, we draw attention to the fact thar che equation is of fiese

order in the time-defivative, This implies that once the initial value of ¢, namely,
¥{x,0), is piven, its values at all other times can be found. This is evident from

the form of the equation as seen by a digital computer!

O (x.4)
D as

or from the form of the most general solution. Given ¢{x,0), the function *(p}
may be found from (3-2), with z = o;

$lxis + A = $xs) + —2’% (33)

1
Hest) = —— f dp 4(p) ¢ (3-4)

. »
may be inverted, and once #(2) is known, the solution is known for all values

L .
1 For a discrere mesh, 3¢(x, 1) /a7 must be replaced by [B(x, £ + Ar) — $x a1/ A, with
ar small but not vanishing.
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of 7. Note that chete js no “uncerrainey” in the differential equation: once the
initial state of the wave packet is specified—and there are, so far, no restrictions
on #{x,0)—then that wave packet is completely specified at all later times.

In searching for ap interpretation for ¢(x, £} we must bear in mind (1} that
Wix, £) is in general a complex function fe.g. {2-16)), and (2) that the function
|@lx, 1)] is large where the pardicle is supposed to be, and smal) elsewhere, It
also has associared with it the feature of spreading, discussed in Chapter 2.
The suggestion of Max Born dat

Plx, ) dx = 19lx, )|* dx (3-5)

define the probabilizy that the particle described by the wave funcsion Ax, §) may be
found bevween x and x + dx 4t time ¢ LURS Out £O provide the correct interpretation
of the wave fuaction. The probability density P(x, ¢} is real, is Jarge where che
particle is supposed o be, and its spreading does not imply that & particular
particle is speeading; all it means is that as time goes by, one is less likely 10
find the particle where one put itat ¢ = 0.

For this interpretation to held, we must require that

f Plx, ty dx =1 (3-G
since the paricle must be somewhete. In a linear equation like (3-1), the solation
¥(x, §) may be multiplied by a constant, and it still remains a solution, Thus
(3-6) testricts the solutions Y(x, ) toa class of functions that are squars insegrable.
We shall see below that it is enough to requir that

—m

) f " delplx, )|t < | (3-7)

that is, the initial sait wave funciions must be square integrable, With an infinite
intepration interval this means that Pix, 0) must go o zero at infinity at leasc as
fast as x~11~ where ¢ can be arbitrarily small, buc must be positive, We shall
also require that the wave functions $(x, #) be continaon; in x. :

Singe |(x, |7 is the physically significant quanticy, it would appear that
the phase of the solution of the equation is somehow vnimportant, That is
wrong! Since the equation (3-1} is lincat, if ga(x, #} and Yalx, #) are solutions,
50 s

Y, £} = aajnlx, B + aapalx, £ B (5-8)

whete a; and a are arbitrary complex numbers. Clearly the absolute squate of
W, £ in (3-8) will depend crucially on che telative phases of the two pasts. A
more physical way of secing this is to note that as in classical optics, the inter-
ference pattern is deterrnined by the phase relation between the two patts of the
wave function sssociated with the two slits in a rwo-slit experiment. It js, of
course, true that an sserwli phase factor can be ignored.
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We now show that the condition (3-6), imposed at 7 = 0, halds oae for all
times. We need Eq. 3-1 and its complex conjugate

5 HED B NN
—# % 2w o (3-9)
Ncm;.
0 _w 2
EP(X'I)_ o y+y dr
- p(Ew,p o)
T H\om axt ¥ 2m 4 A
2
- Dx | 24m D dx v
If we define the fux by
e )= g OF _ N _
| Hx, 9 = im (&* ox o w) (3-10)
we seg l:hat.

o d
gl’(x, 0+ g;(x, H=0

" (3-11)
I_ntegra.riné, we find thar
a = oo a .
> _mde(x,t)— —f_wdx&;(x.r)—o {3-12)

since for square integrable functions, Fx, ¥) vaaishes ar infinity. Incidentally,
had we allowed discontinuities in ¥(x}, we would have been led to delta-func-
_ tion? singularities in the flux, and hence in the peobability density, which is
unacceptable in a physically observable quantity.
The relaticn (3-11) is a conservation Jaw. It expresses the face chat 2 change
. In the deosity in a region in x is compensaced by a net change in flux into thac
region

3 [ b ooa
'5‘-/; ;iscP(x,:)—--f‘ drcg‘%;(x,r)

=fa, ) — f(b, 1) (3-13)

r .

“ Sec Appendix A for a discussion of delra funceions.
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The definition of P(x, £), f(x, £) and the conservation Jaw zre mnaintained if the
equation {3-1) is changed to
N(x) B on{x) »
m —_—— e — e T T -

P o O + V(x) $lx, 5) (3-14)
provided shat ¥(x) is real, This is important, since we will argue later that {3-14}
is the Schrédinger equation for a particle in a potential ¥(x]. The genenalization
to three dimensions is scraightforward, Eq. 3-14 becomes

dspnd B (T B 2
a‘ - axz + ayg + bz’ "Ex: ]- Z, l‘)

+ Vix, 5, 2) x5, 2, 9)

ik

that is,
0D P e v v (3-15)
a{‘ m
apd the generalization of (3-11) reads
% Pe,d +vjr,a=0 (3-16)
whete
Px, ) = lg(r. DI (317)
and
% _ '
i o= > [, £ Pplr, ) — W(E, 4 ¥, 1) (3-18)

Given the probability densicy P(x, #), expectation values of functions of x
may be calculated. In general, we have®

() = f ) Pl 1) = f e g 8 fod Wi ) (3-19)

This oply has meaning if che integral converges. The expression does not help
us if we want to calculate the expectation value of the momentum, since we do
. not know how to write momentum in terms of x. We wy the following: since
classically,

dx

p=mr= m—d; {3-20)

3 For & finite, discrete “sample space” with probabilities p: so thar By = 1, the mean
value of any variable over the space is {3 = BEfire.
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we shall write

9 =m0 = m L [yt ) gt

{3-21)
This yields.

w * . ﬂ
(P)zm[a&(%?“""”m)

Note that there 18 no &x/d¢ under the integeal sign. The only quantity thar
varies with time is (¥, #), and it is this variation that gives tise to a change in x
with time. Making use of (3-1} and its complex conjugate, we have

LN 2
(F)—Z; _wdx(?;,xw—w*xax,)

" Now

W w2 (N,
-ch;w& bx(bx x\b) O ¥ ox xOx

2 * o] 2
= o axx\*)—‘a_(%*&)+¢ax
2 (2 ¥, ¥
"ax(“"xax)"'""aﬁ‘“aﬁ .
ﬂ:ncemcinregrand has the form

92 ___aﬁ* T _Ehj _ « ¥
3 (a xb— ' 5 *"J») + >
30 that

0= faeven 2y 522

since the integral of the derivatives vanishes for square integrable functions,
This sugpeses that the momentum is represented by the aperasnr

I

2=

(3-23)
and that, more generally

) = o :)‘f(% = Yo

"

(3249
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Armed with this representation we can mow discuss the physical sig-
nificance of ¢(p), which appears in (3-2). First, it is sufficient to consider that
equation at 7 = 0, since ¢(p) does pot have any time dependence. Witl_l

l H A = z ik
W = i [ 89 o *J:JM’““

we find, using the inversion formula for 2 Fourier invegral, rhat
1
ity = —— dx ik
that is,
1 .
MP) = mfdx &(x) F‘“"" (%—25}
%
Now

f dp $*(p) Hp) = f dp 6*(p) _«/;Tﬁ f di g

1
- -— 1 * —ipslh
fdxw(x)‘/mfm @) e
= f dx Plx) ¥Hx) = 1 (3-26)
This tesult is known as Parsepal’s theorem in the mathematical literatuce, It states

¢hat if 2 funcrion is normalized to 1, so is its Fourier cransform.
Next consider '

HN(x)
ax

t ] ii—l._ 1P,
=f¢¥¢(x}£#w/h—ﬁfdp¢(¢b)e ”‘

_ f Y Ry f dx YA(x) rt

i
o= [y

- f dp 945} ™) (3:27)

This result, together with (3-26), stiongly suggests that ¢{g) should be iner-
preted es the wave function in momentum Space, with J¢(g)|?* yielding the
probability density for finding the particie with momentum p. When Plx, Hisa
solution of (3-14), we may define (g, ) by
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1 -
wmh = f dp 93, i) e (328)

The fact that in general g(p, £) has a time dependence does not change (3-26),
(3-27), or its incetpretation. Lest the reader think that in spite of this symmetry
between x- and pspace, p = (R/7){0/dx) is an opetator, and x is not, we note
that x is in fact 2n operator too. It happens to have a particularly simple form in
x-space, but if we want to calculate (f{x}} in momearum space, then, we can
show by mechods very similar to the ones used above that

d
{fi)) = fd}' ', 0 f(fﬁ —Bp_) #p, 1) {3-29)
_ In other words, the operator x has the representation
. O
x = jfi EP_ (3-30)

" in momentum space.

We will find that aperatoss play a central zole in quantum mechanics, and

.we will slowly learn a grear deal about them. At this point we will indicate
only chat;

L In contrast to ordinaty numbers, operators do not always commute,

we define

[A» B] = AB — BA {3_31}
0 E ‘
[ x] 9l 5) = - a—m‘,{x, - x= Mg: ]
- %ﬂx’ 7 (3-32}

that is, we have the comprtation relation

#
o] = = (3-33)
This leads to an ambiguity in mmscrilﬁnga chassical fugetion Fx, p} into operator
form, and we shall adopt the rule that fx, #) be symmerrized in x and p. Thus
' X — $0p + p)
#p = s + 22px + pt) . {3-34)

- and 30 on.

. Laver we will see that it is the lackof commuteativity of x and p chat stands behind
' the uncertainty relations conmecting these rwo vaziabies. '
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3. The appearance of the operator p, with its /, might lead us to womy
about the realicy of the expectation value of p. We can, however, check the fact
that p is real. We have

- o = [ave§ 3 - [ava(- )

Bl a4 2
fac(in 24+ 3

A f o2 ) (3-35)
i D .

1l

=0

provided the wave function vanishes at infinity, which it does fot a square
integrable funcrion, Sometimes onc has occasion to use functions that are not
square integrable but that have certain periodicity conditions, for example,

W) = plx + L) (3-36)

If one restricts onself to working in the region 0 < x < L, then /7 djdx is still
a hermitian operator, since in (3-35), 0

=2 v

i
- Lwp - Swonr=o G

An operator whose expectation value for all admissible wave functions is real is
called a Bermitian aperator, and hence p, like ¥, is a hermitian opegator.!
We conclude this chzpter by noting that the equation

P iCY ¥(x, 9
2w Ot
may, with the identification (#/f J(8/8x) = pop be written in the form
L OV D) P
h % - m Wix, 8 {3-38)

The opetator on the right is just the energy for a free parricle. I we geaeralize
this to a partick in a potential, we write

W) _ [ 2 ] .
i Yol [m + VO | lx, D) (3-39)

* §ome mathemasical background en operators is discussed in Appendix B.
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v

of, more cxp]iéiﬂy

X, R a 1
A 2D _ D gt (-40)

This equation, generalizing (3-1), is the hagc equation of wonrelativistic quantem
;. mechanics, and it was fist proposed by Schrédinger. The Schrédinger equacion,
- obtained above, can also be wtitten in che form

# ai(;;—‘) = Hyx, D (3.41)

whete H is the energy operator. H is commonly called the Hamiltoniam, because it
is an operacor version of the classical mechenical Hamihonian funcrion, Singe® JJ
is & hermitian operator, 5o is 2, and cherefote so is

_ ¥ _
= om + V(x) (3-42?
if P{x) is a real porential,
In summary:

1. The time dependence of wave fuactions is given by the fitst order
partial differenrial equation

N4, 1)

ik o - Hylx, 1)

whete H is the operator p*/2m + 1(x).
2. Wave functions are restricred to square integrabie funcrions,
3. The probability density for finding the particle at x is

Pix, 2} = |¢{x 9|
4. The funcion ¢{p, 2} defined by

.0 = 7 [dpaip, oo

is the wave function jn momenrum space, and the probability density for finding
the particdle with momencum 2is 9(p, D

5. The momentum £ and the position x are operators, that is, they are
quantities dhat differ fiom numbers because of their lack of commuraciviey.
In x-space, the momentum operator takes the form

A D

e

2

¥ From now on we will drop the subscript #f on pop. We will use it only when there is
danger of confusion with & number described by the letter p.
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and in p-space, the x operator takes the form

x =i —

o

both consistent wich the fundamental commutation relation for x with 2,
]
=~

We are now ready for a quantitative discussion of quantum mechagics.
We have shandoned the notion of a wave packet as represencing 2 particle. This
nation was helpful to us in making the Schrédinger equation plausible, bue now
it is ${x, £} and its probabilistic mterptetacion that tell us where the particle is,
withowt the particle being thought of as “made up out of waves.”

Problems

1. Use (3-2) and (3-4) to write the solution of the free partide Schrodinger
equarion in che form

) = [ R s U0, 0
Obtain & representation for K{x, x; #) in the form of an integral, and evaluare
the inregral. Show that
K(x, x" 0) = 3(x — ')

2. Show that the conservation Jaw (3-11) holds when Yix, £) s a solution
of the Schrdinger equation with 2 potential V(x), (3-14), provided that Vix)
15 real.

3. Suppose that I7(x) is complex. Obrain an expression for OP (x, ) /0rand
didt f dx P(x, #). For absorption, the last must be negative. What does this tell
us about P{x)?

4. Consider the Klein-Goedon equation.

1 %(x, ) DiAx, 1) ( e )’ _
e a‘, Dt + % W{x. ﬂ =0

Show that thete is a conservation law of the form {3-11) given that f(x, ) has
the form

ﬁ *
o 1) = _E(*&_‘**?;)
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What is the form of P(x, 1)? Can you give an argumenr for why the Klein-
Gordon equation is not a good candidate for a one-patticle equation (i.c., an
alternarive for the Schrédinger equation)?

5. Given thac
(,)—m .
¥y = -] e
44
calculace
(8} )

® VET =G = i

6. Galcalate the momentum space wave function fot the system desceibed
by the wave function in problem $. Use it to calculste

@ ¢

®) V) — (¥ = ap
- Calculare the value of Ax Ap using the above, and the sesult of problem 5(b).

7. Given the wave function

ﬂx}:x’-l-s’

{a) Calculate N needed to normalize ().

(b) Use the sbove wave function to calculare {x*). What values of # lead
to convergent integrals?

(c) Galculate {42} ditectly, and using the momentum space wave fuacrios.,
(d) Use the definitions '
dx = V() - («F
ap = V) = GF
to calculate Ax Ap for this problem,
8. Show thar the operator relation
VPN i = + a

holds. The operater ¢4 is defined to be
el = 3 Av/al
r=0

[Hine. Calcalate ¢35/ xe—ivaih f15) where £} is any function of p, and use the
feptesentation x = ;& dfdp.]

9. Consider the functions ¥{#) of the angular variable 9, testricted o the
intetval —x < 0 < 1. ’
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If the wave functions satisfy the condition y{x) = ${—), show thit the operator

-

is hermitian. )

10. Consider ¢{p), the momentum space wave function-<of a parcie. If
this function is only defined for positive values of p, what condition must #(p)
satisfy in order that x be a hermitian operator? [Use (3-30)] -
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Eigenfunctions and Eigenvalues

Let us consider the time-dependent Schrodinger equation obrained in
Chapter 3,

SN B e
ﬁ—b’—- = — A + V{x) d{x,) (4-1)

sad aternpt tb solve it by reducing it to 2 pair of ordinary differential equations
in one variable. Write :

¥x2) = T(ulx) {4-2)
which implies that

gy L _ [_ B Ful)

T o e Vst | T
Dividing by #(x) T() we get

. Q'T(!)/df _ —(ﬁzjzm) (dﬂg(x);dx’) + V(x) u@ ]
h O #(x) “3)

This can only be satished if both sides are equal 10 & constant, which we call E.
The sclution of

T8

i - ETn {4-4)
is ' .
T{,) = e Eein (4.5-)
where C is a constant. The other equation is .
Rt Pulx) '
T i + Vix)a(x} = En(x) {4-6)

This equation is frequently called the sine-independent Schridinger equation. ts
chagacret is rally diffecent from thae of (4-1). Equation 4-1 describes the time

="
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development of ¥(x,7); Eq. 4-6 is an eigenvalue equatin. To explain what this
means, we must retusn to the potion of an operator, which was briefly men-
tioned but not defined in the last chapeer. _
Most genetally, an operator acting on a function maps it into another

fonction. Let us consider some examples

Of(x) = Flx) + xt

Of (%) = [fI*

Of(x) = f(3x* + 1)

Of (x} = [df(x)/dx?

Of(x) = df(x)/dx — 2f(x)

Of(x) = Mx) 4-7)
All of these examples share the property that given 2 function f(x), there is 2
rule that determines Of(x) for us. There is a special class of operators, called

Yinear operasors (we denote these operators by L to distinguish them from che
general operators 0), These have the property that

LA + f09) = LA + LAt (4-8)
and,! with ¢ an arbitrary complex number,
Lef(x) = eLf() (49)

Thus, in our list only che last two are linear opetators.
A linear operatot will map one function into another, as in the example .

df(x
LA = L2 2

It is instructive to think of the functions as analogous to vectors in a thres-
dimensiona} space, The action of an operator is to mansform a vector into
another vector. In the special case thac the vectors are all of uait leagth, an
opetator will transform onme point on a unic sphere joto another. An opetacor,
in this special (but very relevant) example, may be a rotation zhout an axis
(Fig. 4.1). Let the operator be a rotation of, sy, 30° about the z-axis. It is easy
to visualize what happens to various vectots under this operation. There will be
two vectots that have a special property: the unit vectors co che north and south
poles will be mapped into themselves under the rotation. This is a special
example of an operator equation like (4-6), which may be written as

Hug(x) = Fuz(x) {1-10)

+ There are also @ndifinear operacors, for which (4-9) is replaced by Lofix) = " Lftx)
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¥ig. 41, An illusation of the operator rotating

vectors by 307 with the vectors lying on the uni
sphere: for vecrors on the eqnaror (4 — A}, atan
intermedizte fatide (B — BY), and ar 3 pole
- =)

This equation states that H, the Hamilwonijan operitor actiog on 4 speciel clags
of functions, will give back the function thec it is acting on, multiplicd by a
constant. The constant is celled the ¢igenvalue. The solution of the equation
depends on E, and we have therefore libeled it with an E, The solution ug () is
called the sigenfunction, cotresponding to the eigenvalue E, of the operator F,
We shall see thac eigenvalues can form a continuumm or be discrete,

' The solution (4-2) is of the form #g(x) e Since (4.1) is a linear
- €quadion, a sum of solutions of the above form, with petmissible values of E,

15 also a solution. Thus the most geneml solution of {(4-1) is

weh = (2 + / 5 C{E) uao) e ()

where C(E) is an arbitrary function of the cigenvalues, and the sum extends
over the discrete values of E, the integral over che continuous range of eigen-
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values. The eigenvalues of the operator H are called the energy eigenvalues,
as is suggested by the form of
2
H=L% 4+ ¥V (4-12)
Zm

Before discussing a very simple but instructive example, we note that the
separation of the equation would feil if the potential 1 depended explicitly on
time. We will see tater that when this is che case, energy is not 2 constant of the
moxicn. :

A. The Eigenvalue Problem for a Particle in a Box

We consider Eq, 4-6 with
' - V=0 |xl < & .
= o elsewhere (4-13)

This implies thac the wave function must vanish for |x| > #, that is,

wa) = w(—a) =0 (4-14)
Inside the box
dulx) = 2mE .
X + ) alx) =0 | {d-15)
First we notice that if E < 0, then (4-13) takes the form
%} — wmlx) =0 . {4-16)

with 2 = 2m|E|/h% The most genera} solution is 2 linear combination of &=
and #*=, and there is 0o way of satisfying the boundary cendidons {4-14). Thus
the energy eigenvalues must be positive. We write '

2mE o
B = % o (47)
so that the equarion (4-15) takes the form
.‘.‘p_:i:) + g,,(,d =0 (4-18)

whose solutions are sin &x and cos &x. The boundary conditions imply that for
the sine solution, which we denote by #5 (),

ba = nx n=l,2,3,,... {4-19)
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30 that
(o MR .
E 2mat (4-20)
It is easy to check that the normalized solution is
: 1
47 = W sine ? . (4-21)
_The cosine solution, denoted by #{(x} must be such thar
kbi=(n—Dw #2=1273... {4-22)
thar is,
" — (/D)) R
Bt = [ _,_( L 4.
" 2uma* (4-23)
The normalized solution is therefore
e o1 n —(1/2
. “E-:—)(x) = _\/_‘; COS L’%}Jﬁ'— (4_24)

We see thac the () signs refer to the even/odd property under the reflection
x— —x

The solutions have the propetty that
f © Bl P = f " B 270 = b

_ f _: 2ol w7 (x) = o {4-25)

thac is, they satisfy what are called orthonsrmalisy comditions. Since the solutions ate
real, the complex conjugation is not really necessaty, but is inserted for con-
sisteacy with futere usage.

The state of Jowest energy, the ground stare is reptesented by #i(x), and
Its energy is .

R '
B' +r = —_—— ' . 4-2
' Buzgt® ' (4-26)
The soluticns are real. It thetefore follows that
=0 (4-27)

This can be done by ditect cakeulation, or by a symmertry argument: for any one
of the solutions, which are real, (#) is of the form (/i) X (intcgral). Since @)
must be real, the integral, involving only real functions, must vanish; equiva-
lently, the integral involves a product of two even or two odd functions, with

:
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2/ dx inserred berween them. The total integrand is thus an odd fanction of x,
and upon insegration over a symmetric interval must yicld s vanishing integrml.

We can calculate {p*) for che various solutions. In fact, since inside the
box p* = 2mE, we have

@ty = 2mE (428)
Notice that )
22V {(pt) ~ 295k > B (4-29)

is consistent with the uncertinty telation.? We also note thar the lager the
. number of nodes in a solution, the higher is its energy (Fig. 4.2). This is under-
standable, since the kinetic energy is larger for a solurion with  lazger curvature,
a measure of which is 2tu/dx*. Specifically

a Po B[ dtd B[N
_—— s —— ) = -
szd""'("}dﬁ 2] A dx T 2m fdr’dx

2

is large when the function has a lot of vatiation in it

B. The Expansion Postulate

An arbitrary function ${x), satisfying the boundaty conditions ¥{a) =
¥(—a) = 0, can be constructed from our solutions. [t will be a superposition
of all of them '

W) = 3 (AP0 + A7 0] (4-30)

The orthonormality relations can be used to determine the coeflicients A
With the help of (4-25} we on calculate, for example,

[ i awen
= 5 [ i+ A0 [otomo &

=]
= AP
50 that

4 = f B ) ) (431)

2 [t is a genersl fearurc chat for higher eigenfunciions AxAp grows with che cigenvalue.
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Fig. 4-2. Eigensolutions for particle in a bex.

As in our discussion of the free wave packet, we can calculate the time develop-
ment of this achitrary initial packet. Since cach of the solutions #{*(x) acquires
the time dependence ¢ tEa @M [see (4-11)], we have quire generally

W) = 2 [P () B 4 AT o] (4.32)
Tl

To get an idea of the physical mezning of the coefficients 4™, we caleulate the
expectation value of the energy in an arbitrary state, Since inside the box H =
#2/2m, and outside the box nothing coneributes, and since

He®() = B0 (4-33)

we have, using the orchonormality reladons {(4-25),
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) = [ v vt
=fdx{ gl [A§’+Hg'('+}(x}* + Ag_]‘aﬁ,_)(x);]}

x [ > [EL“AL*’«S.“(::) + Ef;’AL"a;"(x)]}

mml

il

3 (B AP + B A7) @30,
m=1
In exactly the same way we show thac

[ dog(x) $(x) = 1

implies that
L (4P + 147 =0 - (435)
n=1

Equation 4-34, rogether with the normalization condition (4-33), swongly
suggests that | A |2 be interpresed as the probabiliry shat a measurement of she
energy for the avbitravy state yields the value BS®. Note that only the values £ are
possible for the energy, 5o that a given measurement can only yield one of the
" values B{.

For what packet will the messurement always yield an cnergy BT fan
eigenvalue)? Clearly this will be so only when

| A2 = 8. (4-36}

that is, when w{x) = s{+ (%), the cigenfunction corresponding to the cigenvalue
E{Y. This leads us to a very impormant conclusion:

Suppose that we have a general packet described by $(x). If 2n cacrgy measure-
menr js carried out, only an eigenvalue of the Hamiltonian operator H can
result, with probabilicy

P(E) = |f d*(d) )t (4-37)

{where we have left off the () label for generality). Furthermare, after the meas-
wrenemt that has yiddded the digenvalue E., the saie of the system is described by the
sigenfunction u.{x}, since atherwise a repetition of the measurement would not
necessarily give the same result, and reproducibility of a measurement for 2
given system is essential for the measurement to have any meaning. These
statements dre not pecubiar to the problem of a particle in a box. They hold for
more genetal systems [with 2 ¥{x)], and also for hermitian operators other than
the Hamiltoniaas, as will be seen again and again, and these statements Lie ar
the heart of quantum mechanics.




_ Eigenfuncrions and Eigenvalues 65
C. Parity

The cigenfuncrions for the particle in 2 box were divided into two classes:
those even in x, denoted with 2 (4) and these odd in ¥, denated with (—). If
we stare wich 8 wave packer ¢{(x) that is even in x, say, then in {4-30) 21l the A7
must vanish. Equation (4-32) then shows that the packer remains even ip x fot
all rime. The same halds for a packet thae is initially odd. Thus for our box,
which was symmetrically centered about x = 0, we find that “evenness” and
“oddness” ate time independeat. Since any constant of the motion is of interest
to us, we will formalize the discussion somewhat,

We do this by intcoducing the parisy aperator P, whose rule of operztion is
to reflect x — —x. Thus for any packet ¢{x), we have

PP(x} = ¢(—x) (4-38)
For 20 even packet we have )
PN = gy (4-39)
and for &n odd packet :
: PO = —p() (40

These two equations are eigenvalue equations, and what we have shown is that
even functions aze eigenfuncrions of P with eigenvalue 41, while odd funcrions
are eigenfunttions of P with eigenvalue — 1. In the problem of the particle in o
box, the functions €% (x) are not only eigenfunctions of H; they are simsl-
raneously cigenfunctions of P.

_The eigenvalues =1 are the only possible ones. Suppose we have

Pulx) = xau(x) {4-41)

Applying P again, we would get .
Plalx) = Prlx) = Mux) {4-42)
However P(x) = a(x), since two teﬁcct.ions should not change anything.

Hence M = 1, thatis, A = -1, An arbitrary function ¥(x) ran always be written
as a sum of an even and an odd funcrion '

W) = 3009 + W= + H9(e) — 9] (13)

that is, just es with the eigenfunctions of H discussed in our example, any func-
tion cza be expanded in terms of the eigenfunctions of this new operator, This
100 18 2 general feature of hermitian operatots: the eigenfunctions of any hermitian
Cperatyr are said 10 form a complete set, in terms of which any funetion can be expanded,
We leave it w0 che reader to show that (P} is rea] for any state Y(x), which
implies thac the operator is hermirian.
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Pig. 4-3. Box for which there is no symmetry
under reflecrions.

The explicit appeatance of cvenness and oddness came abour because we
centered the box ar x = 0. Had we taken it to lie between 0 and 24, nathing
would have changed, and there would still be symrdetry under reflections about
' % = a. Such symmeuty would, however, be much less appatent. The lesson to be
Jearned here is that in setting up a quantum mechanical problem oge should
always pay attention to the symmeties in the Hamiltonian, and choose the
cootdinates in a way that exhibits the symmetrics most explicitly. I the box
were uneven (Fig. 4-3), no amouat of changing coordinates would bring about a
symmetry. The impoctant fact is that he symmetry be in the Hamiltonian.? This may
be seen more clearly by ssking under what circumstances an even function will
remain even for all time, Let

¥(,0) = $(—x,0) = $(x) (4-44)

The tdme devcl(;pmcnt is given by
ik aig_,:) = H{x) (4-43)

If we operate with P on chis equation, ire get
ih % Pg{xf) = PHY{x)) ' (4-46)
Under the special circumstances that
PHY(xf) = HP¥(x)) {4-47)

1 When dealing with the box, we consider the walls a5 part of the povential, that [s,
the Hamilronian, ‘That is why we do not speak of bonndary conditions instead of che
Hamilconian, | ’
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which holds when # is even under x — —x, that is, when ¥(x) is an even func-
tion {since #2/Jx? js even), we have

i o (PRe)] = HIPWs) (4-48)
Hence
' VPl = 801 + P) gix) {4-49)
and '

¢ () = 301 — P) (x) (4-50)

scparately obey the Schrodinger equation, and do not mix, if the initial state is
even (or 0dd). The condition for the time-indepeadence of parity only holds if

(PH — HP) yix) = 0 (4-51)
for all possible states, that s, if the operatores P and H commute
[PH) =0 (452}

This important condition will be seen to be quite general: any operator that does
ot have an explicit time dependence and thas commetss wish the Hamiltenian H i a
eonstart of the motien. In particular, if the potential changes with time, thar is, we
_have V{x.), then the energy itself is not a constant of the motion, just as in
“classical mechanics. Note that when I depends on #, the separation of the
equation into an equation for the time dependence and an encrgy eigenvalue
equation is not possible,

D. Momentum Eigenfunction and the Free Particle
Our discussion of parity showed that it is not only the energy opetator H

that has eigenfunctions and eigenvalues, Let us now solve the eigenvalue
equation for the momentum sperator

Poptin{x) = ,W‘r(x) _ (4-53)
Since pop == (/7 Hd/dx), this reads _
S @

The solution to this equation is
wp(x) = C #iverd (4-35)

with € a constant to be determnined by notmalization, and the cigenvalue p real,
so that the eigenfunction does noc blow up at either + © or — o, This is the
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only constraint on p; we say that p., has a comrinuas spectrym. We might, by
anafogy with (4-25), expect that the eigenfunctions obey orthonommality con-
ditions. We see that .

f d sy () sy = | €12 f d o5

= 2x|C|%Fd(p — p')  (4:56)
With the choice
ay{x) = \/:T}i greih (4-57)
(4-56) reads
f : ax () wylx) = 8(p = p) (4-58)

This differs from (4-25) only in that the Kroenecker Sy, appropriate for discrece
indices is replaced by a Dirac delra function &(p — P fot the continuous indices.

The statement that any wave packet $(x) may be expanded in terms of a
complete set of eigenfunctions can also be established here. The analog of (4-30)
must take into account that we are sumeming over a continuous index p, so that
we write

@ giprih
yix} = f . dp o} -‘\/ﬁ (4-59)
According to the interpretation implicit in (4-37), |@(p}|*, where
. pipEih Y ®
o = [ax( s} wto @)

gives the probability that a measurement of the momentum fot an arbitraty
packet ¥(x) yields the eigenvalue p. In this way we justify the conjecture made
about ¢{p) in Chapter 3 {cf. Eq. 3-30).
Let us pow tumn to the free particle Hamiltonian. Whea F{x) is zero

everywhere, the energy eigenvalue equation reads

du(x)

T T A =0 (4-61)
where B2 = 2mE/RZ. The solutions are £*t% and ¢—**%, ot linear combinations of
these, for example, cos &x and sin kx, Fhe ouble with all of them is that they

~ are nor square ntegrable, since f dx| Aeke 4 Be—k=|® diverges for all values

of Aand B. .
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There are three ways of getting around this difficulty. -

(2) We may consider the problem defined by (4-61) a5 the lirniting case of
a particke in a box, with the walls receding to infinity, that is,  — . In this
lisnit the solutions (4-21) and (4-24), even aside from the normalization factors
1/4/ will become trivial, unless » becomes very large, so that

— = £ . (4-62)
b &

becomes finite.* We can then neglecr the 4 in the {7 — 3) in the even solutions
(4-24), and obtain the solutions

—‘\}; sin kax “'17‘—; cos Ex (4-63)

We may keep the 1/+/2 factors: they will drop out of the answer to any physical
question chat we may ask about the system.® It is sometimes useful to keep them,
since cheit presence in 2 fine] result indicates that an error has been made,

(b) We may work with wave packets. A solution of the form

Plx) = gib= (4-64)
is 4 special case of {4.59} with
$(p) = Vouh 8(p — HE) - 4

tha is, an infinitely peaked momentum.space distribution. Suppose we replace
this limiting ¢{p) by a very sharply peaked function +/2x% g(p — fE). Then
£%= will be replaced by '

W{x) [dp erzit o b — Jik)

= efhe f dq e'e=1* g(g) {4-66)

which is a plane wave, ¢*¢=, multiplied by a vety broad function of x. We may
make this function so broad thac it is essentially constant over the region of
Physical interest. The vncenainty in the momentum will now be of the order of
magnitude 7/ (size of x-packet), and if the denominaror is of mactoscopic size,
this uncercainty is negligible, We thus satisfy the mathematical requirements
without changing any of the physics. The wave packet description is actually
the ‘one that is closest to what really happens Physically, since any way of pre-

4 We ako keep x finite, and are no particelarly jateessted in values of x that are &
fnite fraction of a. ) )
. ! A guestion thae is not meaningfu] physicaily i3 one dhat depends an the existence of
the walls. For example, “How Jong will it take for 2 wave packet 1o go to the walls and
return o & = 07" is 2 quesrion that we clawsify as not physically relevant,
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pating the initial stat, for example, fiting an electron gun, can nevet, n practice,
Create an exact MOMEHtum ¢igenstate.

{c) The difficulty stems from the fact that for a wave function like 2, the
particle is not confined to any region of space, 50 that the peobability of finding
it anywhere is zero. If we do not ask questions that involve the probability of
finding the particle in 2ny finice Tegion, no problems arise. One way of avoiding
the normalization difficulty is to deal with the prohability current, or flux

) = [y 0 ) (467

discussed at the beginning of Chapter 3. For a wave function Ceio=f%, the flux

is | C|* p/m; for the wave function (7%, the fux is —|C|® p/m. If we note

thar for & one-dimensional problem, the flux of paricles with a density of

1 particle/cm, moving with velocity # = p/m is just s—that is che number

crossing a point x = xo per second—we see that | C|® tepresents the density of

particles per cm. Thus (4-57) represents particles with a density 1/2#A per cm.
In three dimensions, with

#y(x) = C =i {4-68)

the flux will be |Cl? p/m, and this corresponds to a flow of pamicles, with
density | C|? per cm® crossing a unit atea perpendicudar co p, when the particles
are moving with velocity v = p/m (Fig. 4.4).

The energy eigenvalue equation {4-61) has two independent solutions,
¢'t= and ¢—+; equivaiently, the pair of real solutions cos kx and sia &x is also
independent. Whichever pair we choose, we notice that in contrast 1o the peob-
lem of & particle in a box, there ate swo solutiops that have the same coergy
associated with them. This is an example of something that happens quite
frequenty: shere may be more than ene independens eigenfunction shat correspomds to the
same eigenvalud of & hermizian operavor. When this ocours, we have 2 degeneracy.

In the two cases that we have above, the rwo solutions are orchogonal.:

f dx(e—-ﬂw)* ik — f dx e = 0

f dx sin &x cos kx = 0 (4-69}
for & > 0. Ttis always possibie to make linear combinations such that this is rrue.
Such linear combinations are, of course, orthogonal to eigenfuncrions that
comtespond to diffcrent values of the eigenvalue, for example, the enectgy.’
‘Whar distinguishes the two degenenare eigenfunctions? For the set

¢ See Appendiz B,
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Fig. 4-4. ‘The relation berwsen velocity of particles and fux, thar is, number of
- patticles crossing a unit area perpendicular té velocity, per unir time,

- (=, #=), the diffetence is that they are eigenfunctions of the momentum
_pemwt -

Pap eEite = 'f‘; i B = g fif pke {4-70)

L]
corresponding to differrnt eigenvalues of the momentum. Similardy the pair
008 kx, sin £x) are eigenfunctions of the parity opetator, cotresponding to
different eigenvalues
P cos kx = cos kx _
Psin dx = — sin éx : (4-71)
. Inboth cases, whar differentiates che degenerare cigenfudictions is that they ste
- timultaneous eigenfunctions of anocher hermitian operator. Both the operacors
Bon and P have the property that they commute with the Hamiltonian Pos?/2min
this problem. We shall show later that this is a necessaty condition for the
existence of simulmneons eigenfuncrions. For example gy and P do not com-
mue, {since (i/i)(d/dx) changes sign under x — —x], agd therefore the eigen-
functions of one of the apesators cannor all be simultaneous eigenfunctions of
the pther, '
We have leerned an enoemous amouat 2bour quantum mechanics from
the two simple problems that we have considered. We shall return to these
macters in later chapters and generalize them, In Chapter 3 we will zgain consider
some very simple problems, buc his time we will concenttate not on the

machematical featutes, buc mther on the physical systems that they are simple
models cf.
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Problems

1. Youate given the following operators '

@ 0w = N0 ® 0w = x5 1o

© Os(x) = M) @ O} = oo

© o) =22y © ot = [ i)

Which of these are linear opcmtors?

2. Salve the cigenvalue problem:

Oel(x) = M)

What values of the eigcnt;aluc X lead to square integrable eigenfunctions?
{Hint. Differentiate both sides of the equation with respect to x.)

3. Calculate the following commutators

(a) [0, Od]

(b} - {04, 0]

The procedure is to calculate (A,B] by expressing AlBy) — B{AY) in the form.

4, Calculace
i~
for the #{*(x) given by (4-21) and (4 24). Using (p‘) given by (4- 28) calculate
Ap Ax

Tt is chamacteristic that for the higher states the uncertainty increases with #,

5. Solve the Schrddinger equation for a particle in a box with sides at
x = 0and » = L with the boundary condition that

¥{(0) = (L)
What are the eigetivalues and the normalized eigenfunctions?

. . 6. A particle is in the ground state of 2 box with sides at x = +4. Very
suddenly the sides of the box ate moved to x = 4 (b > 2). What is the proba-
bility that the particle will be found in the ground state for the new porendal?
What is the probability that it will be found in the first excited state? In the latter
case, the simple answer has a simple explanation. What is it?

7. A particle is known to be localized in the lefc half of a box with sides at
x = za. If all values of x in the left half side are equally probable, what wave
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function desceibes the pasticle at 7 = 0? Will the patticle remain localized at
latet times?

Caicolate the probability that an energy measurement yields the ground
§tate energy; the enerpy of the first excired state. '

8. A particle is in the ground state of 2 box with sides atx = Dand x = L.
- Suddenly the walls of the box are moved o 4+ @, fespectively, so that the
particle is free. What is the probability that the patticle has momenrum in the
raoge (p, p + dp)? After the removal of the walls, the energy of the particle is
F*/2m, which need not be equal to the ground smate energy. Can you give an
explanation for the appatent lack of enetgy conservation? '

9. Repeat the above calculation for 2 particle initially in the #th eigensrace.
Show that the cotresponding probability is given by _

20t 1 — (—1)* cos pL/R

_— ALY [(p/RY — (ma/LY]?

.. Sketch the distribution, Show thar it confortns with the uncertainey relation, and
- that the result is in agreement with the correspondence principle when # is large.

10. A particke in free space is inivially in a wave packer described by

/e
4 = (2)" emeer

,

(2) What is the probability that its momentum is in the range (p, p + dp)?

(b) What is the ticn value of the energy? Can you give 2 rough
EXpECLa 44 you gi g

. srgument, based on the “'size” of the wave function and the uncerainty principle,

for why the enswer should be roughly what it is? '

11} The wave function for = particle is given by
ﬂx) = A ‘ik:_i_ B g ks
. What Hux does this represent?

What is the flux associated with a particle described by the wave
crion

| ¥) = () 0+
where x(x) is a real function?

13. Consider the eigenfunctions far a box with sides ar x — =a. Without
working out the integral, prove that the expectation vatue of the quantity

Xp + I+

vanishes for al] the eigenfunctions.
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14, Prove that the parity operator, defined by
Py(x) = $(—2)

is a hermirian operator. Also prove that the cigenfﬁncﬁons of P, cotrespom
to the eigenvalues +1 and —1 are orthogonal.
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A detniled discussion of the propertics of second order differential equations as
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See also any of the more advanced texthooks listed at the end of the book.




chapter 5

One-Dimensional Potentials

. Here we solve same simple problems of one-dimensionsl motion, They
- e of interest because chey iflustrate some nondassical effeces, and because

many physical situations are effectively one-dimensional even though we live in
a three-dimensional world,

A. The Potential Step

For this problem we tke (Fig. 5-1) the form of F{x) to be
Vixy=0 . x<9

=V x>0 (3-1)
The Schridinger equation
- E LD 1 vt st = Bk (52

& Vix}

—  —

x=0

F——
t— = —

Fig. 5-1. The potential step.
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cakes che form _ \

d;’ff’ + iﬁ‘:; [E = Fa)] a{x) = 0 {5-3)

We wrire, as usnal

2mB
‘-'ﬁ? = g _ . (3-4)
and we also introduce
2m(E — Vo)
_..___.ﬁg—o = gz (5_3)
‘The most general solution of (3-3) for x < 0, where ¥(x) = 0is
#(x) = ¢t® | R itz {5-6)

This corresponds to a flux moving in the positive x direction, of magnitude

i= ;;,; (™= + R* &#%2) (¢k %= — jER %) — complex conjugare]

LT | (57)
w

We may view ¢™= with flux #ik/m as an fncoming wave. If there were no potential,
we could choose ¢/ as the solution for all x, so that we attribute R co the presence
of the potential. This potential gives rise to a reflected wave, R ¢*%, with a
reflecred flux k&|R|%/m.

For x > 0, we write the solution

#lx) = T el (58

The most general solusion for x > 0 is # linear combination of ¢%¢= and ¢*4%, buc
a term involving the later would desitibe a wave coming from + o= in the
negative ditection, and with the “experiment” that we have ser up, the only
wave on the right can be a uansmitted wave. The flux carresponding to (5-8) is

. Fg
j= T ' (59)
w
Since there is no time dependence in the problem, the conservation law (3-11)
implies thet j(x) is independent of x. Hence the flux oo the left must be equal to
the flux on the right, that is, we expect that

By = s (5-10)
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The continuity of the wave funcrion implies that
1+ R=T (5-11)

obtained by macching the two solutions st x = 0. In spite of the fact that the

_potencial is discontinnous, the slope of the wave funcrion is also contingous, as

‘can be seen by integrating (3-3) from —e o +¢ (with « atbitrarily small and
positive) and using the continuity of the wave fenction:

dn du S
(;;). B (a).. =f_.“‘”z dx
= [. dx 27‘7? [V(x) - E] #(x) = 0 (5-12)

| We note, for futute refeence, thar if the potential coatains a term like Vod(x — )
then integration of the cquation from 2 — e o @ + ¢ gives.

ad du | 2m ot
(E) ate (Ix),_, T w ) dx Vodlx — a) u(x)

=%www ' (513)

The continuity of the detivative for our potentia!. i:éplir.s that

5 ) k(L — R) = i4T ' (5-14)
We can therefore solve for R and T to obrain

_k—4q
E+ g
2k
T=-— 5-15
| i 515)
- From this we can caleulate the reflected and transmitted Juxes:
Fk Rt fE— 4\
_|R|2=__ el 4
] m Akt q) -
fig hé  dikg
e = = " .
" 619

We note the following:

L. In contrast to classical mechanics, according to which a pericle going
over a potential step would slow down (to conserve energy) but would never be
zeflected, here we do bave a certain fraction of the incident particles reflecred.
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This is, of coutse, a consequence of the wave properties of the particle; pactial
reflection of light from an interface between ewo medis is 2 familiar phenomenon.

2. With the help of {5-16) we can casily check that the conservation law
{3-10} is indeed satisfied.

3. For E 3% Wy, tha is, for ¢ — & from below, che ratio of the reflected
flux ¢o the incident flux, that is, | R| approaches zero. This agrees with intuition,
which tells us that at very high enetgies, the presence of the step is but 2 small
pettusbation on the propagation of the wave.

4. If the energy E is less than Vo then g becomes imaginary, If we note
that now the solution for x > 0 must be of the form

ulx) = Telal= {517)

so as not to blow up at 4 ©, we see thar now

R = (;, - fm) (é - fm)* . 518

k4 iql/\E+ 4|
Thus, as in chissical mechanics, there is now total reflection. Note, however, thar
2k
T= - 3-19
- R+ ilq (5-19)

does not vanish, and a part of the wave penetrates into the forbidden tegion.
This penetration phenomenon again is charactetistic of waves, and we shall see
4 little later that it permirs 8 “'runneling™ through barriers that would totally
block particles in a classical description. There is no flux to the right, since f(x)
vanishes for a real solution even if the coefficient in front of it is taken o be
complex.

B. The Potential Well

We next consider the potential (Fig. 5-2)

Fix) =0 x< —a
= -V —aCx<a
=0 a<x {5-20)
We again write -
B = %’}E {5-21)
and

7= E”L‘gﬂ::'_"ﬂ (5-22)
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Big. 5-Z. 'The povential well,

We can immediately write down the solutions

u(x) = gfk= 4 R omits x < —a
#xy=Adrm L Bein L xia
ulx) = T gth= @< x {3-23)

These correspond to an incoming flux fik/m from the left, 2 reflected flux
- Bk|R|*/» and a tmasmiceed flux fik| T|%/m ro the right. Inside the well there
- afe waves going in both directions because of the reflections at both discon-
tinuities at a. According to Rux conservation we should get

o= m =M gy n B
Marching wave func:iogs and detivatives gives the four equations
£+ Reita = 4 pime | Bie
(e — R e%) = jg(A e—w — B pion)
C A 6T B = T ik
(A £ — B i) = AT gite (5-25)
A litrle algebra yields the results

. - (4* — 4% sin 2qa
. R = Zika
. k=i 2k cos 2qa — H{g* + B sin 2¢a
244 ' .
= ka .
T=e Zkg cos 2q¢ — Hg® + &) sin 240 (3-26)

Again, if E 3> Wy, thete is practically ne reflection, since 4° — 2* & 2éq, and as
B.—> 0, the transmission goes to zec0. Thete is an jrem of spedial interest: in the
special case that sin 2g¢ = 0, that is, for the energies given by

L

E=—Vo+ﬁ ®=1,2,3,.., (5-27)
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thete is no refiection. This is actually 2 model of what happens in the scatteting of
low energy elecrrons (0.1 ¢V} by noble gus atoms, for example, neon and atgon,
in which there is anomalously large transmission. The effect, first obsetved by
Ramsaver and Townsend, is described as s ransmission resonince. A moie
accurate discussion must, of course, involve three-dimensional considerations,
In wave language, the effect is due to a destructive intetference between the
wave reflected at x = —& and the wave teflected once, twice, theice, - . ., at the
edge x = 4. 'The resonance condition 2gs = #w, which may be written in the
form

2

A= — =

g

is just the one that describes the Pabry-Perot interferometer.

In addition to the above solutions for E > 0, thete are, remarkably, also
solutions for E < 0 ptovided the potential is negative, that is, Ve > 0in (5-20).
They will tum out to be discrete. Let us wite

2mE
ﬁ!

The solutions outside che well that are bounded at infinity are

{5-28)

LY

= -« ' (5-29)

w(x) = G e x< —a
wlx) = Cpe PR (5-30}

Since we are dealing with real functions, it is mofe convenient 0 write the solu-
tion inside the well in the form

wx) = Acosgx + Bsingr —a<x<a (5-31)
Note that
2
g = -;%(Vd —[Ep>0 (5-32)

Matching solutions and detivatives ac the edges x = =4 yiclds
Ge*e = Acos gz — Bsinge
tC, e~ = g(A sin ga + B cos 44)
Cy e = Acos ga + B sin g
—ily ¢ = —g{A sin gs — B cos ga) (5-33)
These may be combined to yield

_ Asings — Boos gz
‘_qdcusqa—‘r B sin ga
A sin ga + B cos ga

=¥ i cos ga — Bsin ga (-34)
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Fig. 5-3. Solurions for discrete spectrum in attractive potential well.

. Together these imaply that AB = 0, that is, the solutions ate either even in
x(8 = 0) of odd in x(4 = 0}, 2 sicuation encountered in the case of the iafinite
box. The wave functions ate roughly of the shape shown in Fig. 5-3. The ground
srare, with no nodes, is even. This is a genetal property of simple systems. The
tonditions that devermine the energy are from (3-34)

K = 4 tan ga even solutions
#= —~gcotgz  odd solutions (5-33)
- Let us examine these separately.
- (z) The even solurions:
" With the notation _
2m et
=" =
y=dqa {5-36)
the firse of the telations (5-35) reads
| VE— :
5 T —wny (5-37)

If we plot tan y and /A — y*/y as functions of y (Fig. 5-4), the points of inter-
section determine the eigenvalues. These form a discrete set. The larger A is, the
further the curves for /% — ¥i/y go, that is, when the Jotential is deeper and/for
broader, theve are more bound stajes. The Fgure also shows that no matter how
small X is, there will always be at least oie bound state. This is characteristic of
" one-dimensional actractive potentials, and is #n¢ oue for three-dimensional
potentials, which behave much more like the odd-solution problem that we will
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small

N

o w2 L 32 Fad 5xf2 I ni2

¥

Fig. $-4. Location of discrete cigenvalues far even solutions in square well. The
fising curves represent tan y; the falling curves are VA — ¥/y for different valnes
of x -

discuss below. As A becomes large, the eigenvalues tend to become equally
spaced in 3, with the intersection points given approximately by

_f"_“'{ﬂ-i-%)j' ?1'-_-0,1‘2,... (5'38)

This is just the eigenvalue condition for the even solutions of the infinite box,
and this is as might be expected, since for the deep-lying states in the porential,
the fact that it is not teally infinitely deep docs ot mattet very much.

~ (b) The odd solurions: : .

Here the eigenvalue condition reads
VA7
¥

Since —cot y = tan {(x/2 - 3), the plot in Fig. 3.5 is the same a5 in Fig. 3.4 with
the tangent curves shifted by /2. The large h behavior is more o Jess the same,
with (5-38) replaced by :

yoenw m=123..." . {5-40)

= — coty I(S-SB)
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large

S

¥
2 L iz 2 6n/2 3 2

. Fig. 5-5. Location of discrete eignevlues for odd solutions in squate well, The

tising cutves represent —cor y; the falling curves ate /% — ¥/ for diffesent values
of & Nore chat there is no eigenvalue for A < (x/2)t

I contrast to the even solutions, there will only be an intersection if VA — 75/4
>. 0, chat s, if : _

2mVya®  x*
7 > n {(3-41)

The ¢dd solurions all venish at ¥ = 0, and hence the bound-stage problem
For the odd solutions will be the same as for the potential well shown in Fig. 5-6,
since in the lacer, the condition 5{0) = 0 would be imposed, We shalt see that
such conditions are imposed on wave funcrions in the three.dimensional world.

© ¥ix)

Fig. 5-6. Equivalent potendal for odd solu-
tions of square well bound stare problem.



84 Quantum Physics
C. The Potential Barrier

We now consider .
Vix; =0 X < —a

=V —Gg < x<a .
=0 a < x (5-42)

We will limir our discussion to energies such that E < Vo, that is, energics such
that no penetration of the barrier would occut in classical physics (Fig. 5-7).
Inside the batrier we have the equation

du(x) 2m
v —F—ﬁ;{f— Ve #{x) = 0
that is
dﬂ
;f':) — ) =0 (543)
The genersl solution
W) =der+ Bee x| <& (5-44)

i5 to be matched onro
ufx) = &%= 4 Re ™= x< —a
= T oibx x> a {5-45)
Actually we need not go through the trouble of solving this since the results can
be read off from (5-26) with the substitution
¢ —ix= iV - B (5-46)
Thus, for example, ' '

T = e—Sika 24x

2hx cosh Zxa — #(k* — «*) sinh 2xa

(5-47}

| Vix)

SR s e N
)
¥

—e a

Fig. 5.7. Potentsgl barrier. Energy is such that'a
classical particle would be toully reflecred by the
basier.
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and this implies that

: _ (2En)®

(A ) sinh? 20 + (240)*
There is transmission, even though the energy lies below the top of the batrier.
~This is a wave phenomenon, and in quantum mechanics it is 2lso one exhibited
by particles. This runneling of a particde thiough a barrier is frequentdy en-

countered, and we shall discuss some applications. We also note that when k& is
lacge, the ratio of transmitted flux to incident Aux is

25 2 |
T8 (52 n ,‘ﬂ) s (5-49}

. This becomes an extremely sensitive function of the width of the barrier, and of
the amount bymgrhich the battier exceeds the incident energy, since

Fak

(5-48)

= [2,;;:2 (Vu _ E)]m {5.50)

In general, the barriers that oceur in physical phenomena are not square,
~ and 10 discuss some applications, we must fiest obtain an Approximace expression
for the eransmission coefficient | T|? thtough an irregularly shaped batrier, The
proper way to do this, given the fact that there is no exact solution available for
most potentisls, is through the Wentzel-Ktamers-Brillovin (WKB) approxi-
mation technique.! Our discussion will be less mathematical,

., We observe that (5-49) consists of a product of two terms, the second
- -of which is by far the mote important one. If we wrice

2(ka)(ka)
(#a)® + (xa)?
~-we see that under most citcumstances che firse term dominates the second for
- any reasonable size of x2. The procedure we adopt is e treat a smooth, curved
 barrier as a juxtaposirion of square bariers (Fig. 5.8). Since transmission co-
“efficients are multiplicative? when they are small (in effect, with most of the fux

reflected, the transmission through ¢ach slice is an independent, imptobable
event), we may. write, approximately

log} T|3 ~ —2¢(24) + 2 log

log|T|? == log| Tpans |2

=2 2 Ax ()

! 5ec the WKB approzimation in Special Topics section 3,

* This statement is only correct for the most imporant exponential pare, ag can be
seen from the fact ther doubling che widch will only approximarely square the transmission
coeflicient | T'|2,
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Fig. 5-8. Apptoximation of smooth barrier by a juxeaposi-
tion of square potential barriers..

= -2 f&r V (2m/RE) (Vi) — E] {5-31}

hatrier

In the partial barjers, Ax is the width and (x} the average value of « for that
barier. In the Jast step & limit of infinitely nattow barriers wes when. It is clear
from the expression that the approximation is least accurate near the “turning
points” where the energy and potential are nearly equal, since thete (5-49) is not
a good approximation to (5-48). It is also important that ¥{x) be & slowly
varying function of x, since otherwise the approximation of a curved bacriet by a
stack of square ones is only possible if the latter are narrow, and there again
(5-45) is 2 poor approximation, A proper weatment, using the WKB approxi-
mation includes a discussion of the behaviot near the tuming points. For most
purposes, it is still a fait approximation to wiite

|T|® ~ =2 [ de TR — D (5-52)

with the integration over the region in which the square toot is real.

D. ’i‘unneling Phenomena

The phenomenon of particle tunneling is quite common in aromic and
nuclear physics, and we discuss two examples at chis point.

{2) Consider electrons in a meta). As noted in our discussion of the phote-
electric effect in Chapter 1, these electrons are held in a meral by a potential,
which, o first approximation, may. be desctibed by a box of finite depth, as
shown in Fig. 5-9a. The electrons are actually stacked up in energy levels thatare
very dense, since the box is very wide. It is a property of electrons? that no more
than two of them can occupy any given energy level; thus for the lowest energy
state of the menal, all the levels up to 2 cettain energy, celled the Fermi snergy

1This property of electrons is described by the Pauli exclusion principle, which will
be discussed in Chaprer B
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TPEX

b}

- Fig. 5:9. () Electronic energy levels in meeal. Ej is the Permj cnergy
-and W is the work function. (£) Paorenria) altered by an exrernal electric
field.

{which depends on the density of free electrons) are filled. When the temperacure
is above 0'K,, 2 few electrons are thermally excited to higher levels, bue even at
room tempetature, the number is small. The difference between the Term]
energy and the top of the well is whar is requited to bring an electron out; it is
the work function discussed in connection with che photoelectric effect, Blectrons
- @an be removed by uanskerring enetgy to them, either by photons, o by heating
them. They can also be removed by the application of an external eleceric ficld &
* Cold emission oceurs because the externa) field thanges the potential seen by an
--eleceron from Weo (W ~ e6x) (Fig. 5-9), if the electron is at the top of the “'sea”
- of Jevels. The mansmission coefficients js .

|T| P = g2l 5z (P — o) iarpi {5-53)
. Rince .
{A + Bx)""
Ve M 1
| ft.{w(A + Bx} 3B/2
- this leads to
| T|2 = o~ aVID 755 (B rah) (5-54)

The Fowler-Nordheim formuls, a5 (5-54) is called, describes the emission only
qualimtively. One effect, which is easily included, is the additional attraction of
the electron back ¢o the plate, caused by the image chacge. The other effect,
smuch harder to handle, is that there 2re surface imperfections in the meral surface,
which change the clectric field locally, and since & appears in the exponent, this
gan make a large diffecence. Incidenwlly, we see thar the exponent may be
ﬁitren in terms of the barrier thickness at the top of the Fermi sea, since that
thickness is given by ’
L

& = E (5-33)
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Meial W BcuL my Meta

p

E
Levels from F Applied voltage eV
which 1unnaling 4
can occur I, Ep

Fig. 5-10. Encrgy diagram for tunneling between two metals separared
by vacuum. Tunneling berween metals is possible only when there are
empty states on the right. Such empty states ate creared when eV is
applied to lower the Fermi level on the right.

The same effect appears if we bring twe metal plates close together.
Figure $-10 shows the situation both without a potential difference, and with a
potential difference. Withoue the potential difference, tunneling is not possible
because che levels on both sides of the barrier are filled. The effect of even a weak
electric field is to change the shape of the batier a little (Fig. 5-10)—an effect
thet we can neglect—and ro lowet the Fermi sea on ope side of the batrier. This,
in effect, htings some empty levels in correspondence with the filled ones on the
ather side of the barrier, and now tunceling can proceed, with transmission
coefficient

|T|* o ¢ =2 VE@RT7Y < (5-56)

Such & facror acts as a resistance. Unfortunately this expression is vety sensitive
to the gap separation #, and since for a work function of the order of electron
volts, the separation has to be of the order of angstrams, it has not proved
passible to make metal plates sufficiently flat and patallel. The formula has been
applied to the interpretation of currents flowing between two plares with 2n
oxide between them (Mi-NiQ-Pb), whete the gap can be made as small as 50 i
and it is qualitatively correct, '

An interesting effect ocours when the metal on the right is in 2 super-
conducting state. A characteristic of such e state is that above the Fermi level
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Tunneling ,dr
current
Mormal
e —— —1 Svperconductor
Ep
]\H -
. Enargy a4 B
i 2 gap

Fig. 5-11. Enetgy diagram for tunneling from metal to superconductor. In
contrast o the metal-mecsl cunnding shown in Fig. 3-10, no runneling is
allowed into the energy gap. This affects the cutrent-voltage characteristic as
shown, :

L.

there is a gap in the level density, that is, thete aze no allowed states between an
eoetgy Er ~ A and By + A with A of the order of 103 eV compared with the
Bermi energy Ep of otder 10 cV. These levels do not disappear, bur ate squeezed
_ up and down, 50 that the level density just below and Fast above the gap is very
 hrge. If the electric field is small enough, that is, 28 < A/s, there will be no
tunneling, since there is no place for the electrons to &o. The qualitative features
of the curtent-voltage relation and the energetics are shown in Fig. 5-11. These
features are in good agreement with expetiment,

' (b} Tunneling is lso imporrant in nuclear physics. Nudei are very com-
plicated objects, but under certain citcumstances it js apptopriate o view them
as independent particles occupying levels in a potential well. With this picture
in mind, the decay of 2 nudeus into an a-pasticle (2 He nucleus with 7 — 2)and
a daughter nucleus may be described as the tunneling of an a-particle through a
barrier cavsed by the Coulomb potential berween the daughter and the a-particle,
The a-particle is not viewed as being in a bound state: if it were, the nucleus
could not decay. Rarther, the a-patticle is taken co have positive enetgy, and its
decay is only inhibited by the existence of the bartier. 4

1If you Aod jt difficalr oo imagine why a repulsion would keep two objects from
separaring, think of che inverse process, o capture It is clear thac the barrier will tend o
kexp rhe a-partticle out,
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Fig. 5-12. Povential barsier for « decay.
If we write
||t = @ (5-57)
then

G=2 (ﬂ;)m f " (Z‘Z"2 - E)m (5-58)
#i & r

whete R is the nuclear radius® and b is the turning point, determined by the
vapishing of the integrand (Fig. 3-12). Zy is the charge of the danghter nucieas,
and Z, (=2 here) is the charge of the particie being emitted. The integral can be
done exacily :

[ral=3) -l ()= G- 5)T o

At low energies (relative to the heighe of the Conlomb barriet at = R, we have
&> R, and then .

2mZ Tl im T _‘E 1
()] e

8 If fact, early estimetions of the ouclear eadius came from the study of wedecay.
Nowadays one uses the size of the charge Jiswiburion, as measuted by scattering clectrons
off auclei to get nucter radii- It is not deas shar the two should be expected to give execrly
the same answer.
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with b = Z,Z,¢*/E. If we wiite for the a-partide enetgy E = m1?/2, where # is its
final velocity, then

292, 2t
G it e = 2wadiZy ("f—) (5~61)
fiv p .

The time taken for an a-particle to get out of the nucleus may be esti-
. mated as follows: the prohability of getting through the batrier on a single
- encounter is ¢ ° Thus the number of encounters needed 10 ger through is
# = /% The time between encounters is of the order of 2R/v, whete R is again
the nucleat radius, and v is the « velocity inside the nucleus. Thus the lifetime is

Ty ¥ (5-62)

" The velocity of the a inside the nucleus is a tacher fuzzy concept, and the whole
- picture is very classical, so that the facror in front of the ¢ cannoc really be pre-
--dicted without a much more adequate theory. Our considerations do give us an
arder of magnitude for it. Forn 1 MeV a-particle,

’ZE ’2E 2 ki
= —_ = =" bt | P — 10
v = ¢ 2 :3)( 10 X od0 = 3)(10 cm/sec

Also, for R we ke

R~15% 100 S cm (5-63)

and for A = 216 we get, for the facvor in front, 2.6 X 102, We can also rewrite
. G in the form

: z
— (5-63)
'V E(MeVY)

. 30 that one predics, for low energy o's, the straight line plot

G g

logia - 2 const — 1.73 — 2% (5-69)
[ Rl — 1. —_— -
: ' VE(Mev)

with the consmar in front of the otder of magnirude 27-28 when r is measured in
years instead of seconds, Figure 5-13 shows thar a good fit eo the lifetime datz of
& large number of & em is obtained with the formmla :

1 P
1 — = — f—
Of1) r Cs Cl '\/E

whete €, = 1.61 and C; = 28.9 + 1.6, Thus the very simple considerations
give a rather remarkable fit to the data.
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Fig. 5-13. Plot of log 1/7 versus Cy — CIZJ'\/E with G, = 1.61 and a
slowly varying Co = 28.9 + 1.6 Z*7, (Prtom E. K. Hyde, I, Perlman and G. T.
Seahorg, The Nuclear Propertis of the Heavy Elements, Vol 1, Prentice-Hall,
1nc. (1964), reprinted by permission.)
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With more energetic a emission, the & facror depends on R, and with
R = ro4"2, one finds that re is 2 conseant, that is, that the notion of 2 Coulomb
barrier taking over the sole of the potential beyond the nuclear radins has some
velidity. Again, simple qualitative considerations ¢xplain the data.
The fact thar the probability of 2 reaction {e.g., caprure) between nuclei
is arenuated by the factor :
¢ =TT/ VE) {5-65)

“implies that at low energies and/ot for high Z's, such ceactions are rare. That is
-, why all actempts to make thermonuclear reactors concentrate on the burning of
" hydtogen (acrually heavy hydropen—deutetium}).

HP - H2 — Het + 5 (3.27 MeV)

R+ HE = HE 4 p (4.03 MeV)

HZ 4 H? — jHet 4 a (17.6 MeV)
since reactions involving higher Z elements would zequire much higher energies,
thar is, much higher tempemarures, with correspondingly greater confinement
problems. For the same reason, neurrons are used in nuclear reactors to fssion

.the heavy clements. Protons, at the low energies available, would not be able to
get near encugh ro dhe nuclei t0 teact with them,

E. Ope-Dimensional Model of Molecule

Some aspeces of what gives rise to molecules are exhibired by the example
of 4 particle in a double potential well (Fig. 5-14). The algebraic work is greatly
simplified if we consider a square well in the limit of great depth with the width
goiog o zeto such that For temains a constant. In that cise we get a delta-
function well, which is very easy to handle. Just to show this, consider first a
single artractive potential well

(@n /) V) = = 500 (5-66)
The equation 1o be solved is, when E < 0,
A({x) A
i Eax) = — . 5{x} #(x) . (5-67)

whete 2 = 2m| E| /R,
The solution everywhere, except at x = 0, must satisfy the equation #x/dx® ~
& = 0,and if it is to vanish at ¥ — 4 o, 'We must haye

ulx} = e x>0
= 20 (5-68)
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f- £+ b b+

Fig. 5-14. Double one-dimensions] potential well. The shape of the wave
function For a bound soae is sketched in.

The coeflicients in fronc are the same (and hete chosen to be unity—we can
- pormelize afterwards) because of the continuity of the wave function. The
detivative of the wave function is no longer continuous. As argued before

(Eq. 5-13) we have
an du A
@G-t 00

The last relation gives the eigenvalue condition

Y
——Kk=—
&
that is
h
= — .70
P Py (5-70)
The double square welt will be replaced by
1S
(2m/h2) Vix) = — ;[ﬁ(x — ) + 8z -+ a)] {5-71)

Because the potential is symmerric under the interchange x — —x, we cxpect
that there will be solutions of definite pariry, and we will first consider the even
solutions. '
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L. Por the even solution we wiite
u(x} = 5= x> a
= A cosh cx a2 K> ~g
= o x< —a (5-72)
snd continuity of the wave function gives

e~ = A cosh ke (5-73)

Becsuse of the symmetry, it is sufficient to epply the discontinuity condition
fot the derivative at & = «. Nothing new will come of the application at x = — 2.
We get

by

~ e~ — uA sinh ke = — - g (5-74)
and the cigenvalue condition is

3
tanh kg = — — 1 (3-73)

F
&gute 5-15 shows this graphically. There is only oue intersection point of the
curve tanh y with (\/y) — 1. It is obvious that when y = ), the tight side is zero,

“whereas tanh y > 0. Thus the intersection point accurs for y < A. On the other
bmnd, since tenb y < 1, we must have (\/y) < 2 at the intersection point, that is,

X
A -76
_ x> 2 (3-76)
- If we compare this with (5-70), we see that the energy for the double well is a
~ larger megutive mumber, that is, the energy for the double potenrial is lower. Note

thar this is not because somehow che strength of a pait of potentials is larger
#¥ than that of 2 single potential, 25 mighe be the case if one compared an electron

Fig. 5-15. Solution of the eigenvalue condition tank
y=3y -1
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bound o bwo protons with an electton bound to one proton. The larger binding
is chete because, as Fig. 5-16 indirates, it is easier to accommodate a sharply
dropping exponential to a symmetric function (hete cosh x) with a discon-
tinuity in slope as given, than it is to accommodate it to an equally sharply
dropping exponential on the other side of the potencial. In the real world, a single
electron bound to two protons sepatated by 2 small distance will have a lower
energy than 4 single proton plus a hydrogen atom far away, even though in the
first case there is a more effective repulsion between the protons. Again it is the
way in which the wave function can accommodate itself to the geometrical
situation thet is the dominant effece.
2. ‘The odd solution will have the form

g(x) = ¢ % x> a
= Asinhexr 2> x> —a
= —p Tox< —a (5-77)

Again, because of the antisymmetry, it is sufficient to apply the conditions ac
x = &, say. Contiouity of the wave function gives

Asinh ka = £ {5-78)
and the discontinuicy equation reads

M
e — gA osh ke = — - P (5'79)
o

N

u\

Fig. 5-16. Bound state wave funcrions for single and
Jouble dela function atractive patentials.
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Ll 4

‘Fig. 5-17. Solution of the eigenvalue cdndition
wehy =% - 1), .

Combining the twe yields the cigenvalue condition

: A
coth kg = — — 1 (5-80)
"

. [

Pigure 5-17 shows 2 plot of the teciprocal of this equation, that is, tanh y ageinsc
(\/y — 1)7'. There will only be zn intersection if che slope of the former at the
origin is Jarger than that of the second, that js, if

A1 (5-81)

Aty = X/2 the rerm {X/y — 1)7"is already ar 1, so chat the intersection had to
oceur for y < N/2, that is,

X
= -8
K< _ {5-82)

. Thus the odd solution, if there is a bound state, is less strongly bound than the
~ &ven solution. The wave function, which has wo £o through zero, is forced to be
steep berween the wells, and thus cap only 2ccommodate to a less tapidly
flling exponential, Dépending on the size of 3, there tay of may eot exist an
) Let us now consider a superposition of the ground state »,(x}, with energy
" E, and the excited state #.(x), with energy E, (¢ and o stand for even and odd)

Y1) = wlx) + anlx) (5-83)

u
with o chosen s0 25 to maktf d|¢{x) |t as small ag possible, that is, with

+
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the “electron”’ localized, as far as possible, on the right side. After a time 7, the
wave function will be \

Bl = 2,00 e+ ony{x) Jar

= e E [ () e g e B g (] (5-84)

thar is, the phase relationship berween the two parts will change. In particular,
after a time such chat

¢THEEIN o (5-83)

the “electron” will be localized on the left side in exactly the same way that it
was localized on the right at # = 0. Thus there is an cscillatory behavior, which
may be desctibed by che electron going back and forth berween the two po-
tentials, with frequency

E,— E.
3

W= Jge = 2 (5-86)
We shall leave it-to the reader to convince himself that the period associaced
with the frequency w,e is, for large \, approximarely equal to the “runneling
time” actoss the barrier separating the two wells, as might be determined from
the material presented in Sections C and D. This is a model for the ammonia
molccule, There are ways of measuring such a frequency with high precision,
and thus we have at out disposal a very accurate “dock™®

F. The Kronig-Penney Model

Metals generally have a cryscalline structure, that is, che ions are arranged in
a way that exhibits a spatial periodicity. This periodicity has an effect on the
motion of the free electrons in the metal, 2nd this effect is exhibited in the
simple model that we will now discuss. _

‘The periodicity will be built into the potential, for which we require that

Vi + 4) = V() (>-87)

Since the kipetic encrgy term —(R2/2m)(4%/dx%) is unaleered by the change
x — % + a, the whole Hamiltomian is imvariant under displacements by a. For the
case of zero potential, when the solution corresponding to a given energy
E =R/ 2mis

¥lx) = ¢+ (3-88)

& For 1 discussion of the a is maolecule, see R. P. Peynman, R. B. Leighron, and
M. Sands, The Feypmn Lectares agt Physics, Vol. ML Addison-Weesley, Rending, Mass., 1965.
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: the displacement yields

B+ a) = ek = gike y() 589
thac is, the original solution multiplied by & phase factor, 5o that
[¥lx 4+ a){* = |¥{x}| (5-90)

The observables will therefore be the same at x a5 at x + 4, that is, we capnot tell
whether we are ar x or at x + 4. In our example we shall also insist chat ${x) 2nd
_dr(x + 4) differ only by a phase factor, which need not, however, be of the
form eike, .

To simplify the algebea, we will take a seties of repulsive delta-function

"~ potentials,

Vix) = 2% E i.,, 8(x — na) (5-01)

Ba—

Away from the points ¥ = wa, the solution will be that of the free particle
. equation, that is, some linear combination of sin éx and cos kx (we deal with
veal functions for simplicity). Let us assume that in the region R, defined by
(#— 1)a < x < na, we have

$(x) = A, sin k(x — 1z} + B, cos kx — 24) (5-92)
. and in the region Ruy, defined by né < x < (24 1) 2 we have
WD = Aeasinbx — (r+ Dol + BoncosHx— (- Da]  (5.98)
Continuity of the wave function implies that (x = #4)

' —Asy1 8in Bz + Boy, cos g2 = B, {5-94)
end the discontinuity condition (5-13) here reads

A
é/‘-uwsﬁd-f—&awlﬂnéﬂ—éﬂw——-;ﬂa (3-95)
A licde manipulation yietds
Aspy = An 08 ke + (g cos ks — sin ka) B,

Busa = (g sin ke + cos ka) B, + A, sin ks (5-96)

where g = A ka.
. The requirement that the wave functions (5-92) and (5-93) be relared by
V(Bapa) = o™ Y(R.) (5-97)

is satisfied if
A“] = f“ Ag

Bapr = ¢4 B, (5-98)

-
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When this is inserted into (5-96), we find a consistency condition that reads
(¢* — cos ka)(¢"* — g sin ka — COS ba) = sin ha(g cos ko — sin R}

that is,
gtit — g#(2 cos ba + gsinka} + 1 =10
Multiplication by Fald giVES
cos ¢ = cos ks + 1 £ sin ka (5-99)
* If we take periodic boundary conditions for our "ctyseal” so that
$(Rorw) = $(R) | (-100)
then it follows from (5-98) that ¢¥¢ = 1, that is,
¢=%m m— 0,1, £2,. .. (5-101)

We denote ¢ by ¢4, where g is the wave number of an elecron in 2 box of length
Ne, with periodic boundary conditions and without any potential, that is,
without any ions present. Thus (5-99) should be eewritien in- the form ;

o & )
cosqu=ccs.&a+§}.sm < - (5-102}

ka .
This is a very interesting result, because the Jeft side is always bounded by 1,
thae is, there are restrictions oo the possible ranges of the energy E = f*& f2m
that depend op the parameters of our “crystal.” Figure 3-18 shaws a plot of the
function cos % + A sin x/2x as a function of x = ka. The horizontal line tepre-
sencs the baunds on cos ¢4, and the regions of x, for which the carve Lies outside
the strip, ate forbidden regions. Thus there are adfowed enesgy bands separated by
tegions that are forbidden. Note that the onset of a forbidden band comesponds
to the tondition '

ka = mr %= 1, +2,+3,... (5-103)

This, however, is just the condition for Bragp refiection with normal incidence.

The Kronig-Penney model has some relevance to the theory of metals,
insulators, 2ad semiconducrers if we take into iccount the fact (to be studied
later) that energy levels occupied by elecons cannot acocpt more electrons.
Thus a metal may have an energy band partially filled. If aq external field is
applied, the clectrons are accelerated, and if there are momentum states avail-
able to them, the electrons will occupy the momenTum states under the influence
of the elecrric feld. Insulators have completely filled bands, and an electric
field cannot accelerate electrons, sinee there are a0 peighboring empty scates.
If che electtic Beld is strong enough, the electrons can “jump” actoss a for-
bid den enefov gaty and go into an empty allowed encrgy baad. This mm:sr.w\ds
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kax-!-—m—-w‘fz"

|

‘Wig. 5-18_ Plot of cos x + (3/2){(sin x/x) as 2 function of x. The horizoatal lines
" repeesent the bounds +1. The tegions of x for which the cueve lines outside the
sxip are forbidden.

" to the breskdown of an insulator. The semiconductor is an insulator with a very
narrow forbidden gap. Thete, small changes of conditions, fot example, a rise in
temperature, cen produce the “jump" and dhe insulator becomes a conducror,

. The Harmonic Oscillator

As our last example we consider the harmonic oscillator (Fig. 5.19). In
contrast to the examples dealt with until now, the differential equacion rhat
needs o be solved i5 not 5o trivial, and one reason for discussing this problem is

to learn something about the techniqie for solving such equations.
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A wixi by io|?

Potential

-— =3
- -n=2
o ~n= |
=———nr=0

- X

Fig. 8-19. Harmonic oscillator cigenfoncrions, znd probability densites
foc the lowest four sigenvalues. Note the evenness and oddness properties of

the eigenfunctions. -

The classical Hamiltonian is of the form
aetpye
so that the eigenvalue cquatidn is
B Lty
2m A
We introduce the frequency of the oscillator

w=Vi/m

+ bhetu(x) = Eal(x)

write
2B
| = h
and change variables to
me
=J7*

{5-104)

(5-10%)

(5-106)

{5-107)

(%-108)
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o fimally ger che simpler form of the equation

%+(e-f)ﬂ=0 (5-109)

. All quantities that appear are dimensionless.
_ For any eigenvalue ¢, a5 y* «—+ @, the term involving « is neglipible, and we
wust therefore require that (3} asymprotically satisfy the equation

arl(y) _
d—f —Fu(p) =0 (5-110)

‘We multiply by 2duc/dy, which allows us to rewtite this in the form

o, equivalently,

Fhis simplifies a great deal if we neglece the term on the tigh side of the equa-
jon. We assume that this tan be done, and then check that the assumption was
rorrect. If we drop the right side, we find that

‘% = (C+ pu)s

here C is & constant of integration. Since both uo(y) and dug/dy must vanish at
“infinity, we must have € = 0. Thus

ditto :
2 = s (5-113)

whase sofution, acceptable at infinity, js
wly) = ¥ (5-114)
We can now check that Zpg? = 2y 2% s indeed negligible compared with
d d '
—— N — - e T ﬂ’
2 (FPue?) dy(y’e V) —gyl

for latge y. If we now introduce 2 new function R(y), such thac

_ #(7) = h(y) 12 (5-115)
then che differential equation is easily seen to take the form
FHG)  hG)

P K dy +l—-Dhip =0 (5-116)
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This may not seem Like much of a simplification, but we have accounted for the
behaviot ac infinity, and we can now lock at the behavior near y = 0, Let us
arcempt a power series expansion

Ky = X any (5-117)

m=0

When this is inserted into the equation, we find that the coefficients of y
satisfy the recursion relation )

(w4 13m 4 2y dagr = (2 — e+ 1) 4a {5-118)

Thus, given #a end &, the even and odd series can be generared separately. That
they do not mix is & consequence of the invariance of the Hamiltonizn under
reflections, For arbitraty e, we find that for latge m (say 2 > N)
2
gy =T (3-119)
"
This means that the sclution is approximarely
k(y) = (a polynomisl in ¥)
| +an[yw+i}h'+z+273y~+i+.—.i.-—
N NN+ 2 NN+ 2N+ 4
where, for simplicicy, we bave only taken the even solution. The series may be
wiitten in che farm

ﬂ B | bﬂ)”ﬂ—l UE)NJ? (yﬂ}-\'f&l-l
anr ( 2 1)'[(fo2—1)!+ /2! +(N;z+1)s+‘“]

wgich is of the form of a polynomial + 2 consrant X 37 e#2, When this is insetted
jnro (5-115), we get a solution that does not vanish at infinicy. An acceptable
solution can be found if the fecursion relation terminates, that is, if

poi]

e=2N+1 (5-120)
For that particular value of e the recursion relations yield

NIN—2)...(N—2b+ 0N — 2k +2)
Q8! 0

an = (—2)F (5-121)

and

(N4 1N —1)...(N—2k+3)(N—2k+1)
@k + 1)

dapp = (—2) a (5-122)

Thus the resuls are:
1. There are discrete, equally spaced eigenvalues. (5-120)} wanslates into
E = fus(r -+ 3) (5-123}
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a form that Jooks familiar, since the relation berween energy and frequency is the
same as that discovered by Planck for the radiation field modes. This is no acci-
dent, since a decomposition of the electromagneric field into normal modes is
esseatially a decomposition into harmenic oscillacors that are degoupled.

2. The pelynomials R(y) ate, except for normalization consmnts, the
Hermite polynomials H,(y), whose properties may be found in many textbooks
We are not really interested in these details, and we will solve the harmonic
oscillator problem agein, s0 that we do not pursue dhese matters. Ic is, however,
worth pointing out that the reason for the importance of the harmonic oscillator
in quantum mechanics, as in classical mechanics, is that any small perturbation
of a system from its equilibium scace witl give rise 1o small oscillations, which
are ultimately decomposable into nommal modes, that is, independent oscil-
lators.

3. As {5-123) shows, even the lowest stave has some energy, the zere. poine
energy. Its presence is a purely quancum mechanical effec, and can be interpreted
in wims of the uncerinty principle. It is the zerq-point energy that is responsible
- for the fact that helium does not “freeze™™ ac extremely low temperatures, but
remains Jiquid down w temperatutes of the order of 10 degrees Kelvin, at
aormal peessures. The frequency e is larger for lighter atoms, which is why the

effect is not seen for nicrogen, say. It also depends on detailed features of the
interatomic forces, which is why liquid hydrogen does freeze.

Ptoblems

1. Consider an arbitrary potentia! locatized cn & finits part of the x-axis.
The schutions of the Schrddinger equation 10 the left and to the rnight of the
potential region ate given by

Ekx —ihx . PR — ey
s emh N wten

respectively. Show that if we write

C=5uAd+ S'.gD
B = S‘zlA + SggD

that is, relate the “outgoing”” waves to the “ingoing™ waves by

(5)-(: 9(2)
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that the following relations hald
iSul? + {Sul?=1
|521|’ + lsnl’ =1
Su$h + SuSiz = 0

This is equivalent 1¢ the statement that the mafrix
s]! Sij
5=
5 s
is unitary.

(Himt. Use Aux conservation and the possibilicy that £ and D are arbitrary
complex numbers.)

2. Calculate the elements of the scettering matrix, S, Si Su, and S for
the porentiat
Plx) = 0 x< —a
= Vs — < x<La
=0 x < e

and show that the general conditions proved in Problem 1 ate indeed satisfied.
3. The elements §; . . . Sx are functions of £ Show thac

Su(—#) = Sa(k)
Sa(— k) = Sxl#)
Sis(— k) = Sn(k)

that is, that the matrix has the propercy
S(—&) = $H(#)

4. Consider the odd solution to the potential well {¢.g., Eq. 5-39), which
can be used as 2 model for a three-dimensional patential well with zero angular
momentum. If the tange of the potential is given 1o be 1.4 X 107" cm and the
binding enecgy of a system is —2.2 MeV, and if the mass to be used is 08 X
10~ gm, find the depth of the poteatial in MeV,

[#ings. {1) First, convert distances and masses into unirs of some mass, so thac
the range is 4(%i/uc) and the binding energy is of the form e(uc®). A convenient
mass might be the one given. (2) The binding encrgy is very small, so that it is
almost zero. If it wete zero, condition (5-41} would yield V5. Expand aboue
this value.]

s. Without actuatly solving the Schrédinger equation, set up the solutions
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so that only the maeching of eigenfuncrions and their detivatives temain to be
done for the following situations:

ith the following conditions (a) flux #ié/m would be incident from the left if
the potentials were absent; ke E < V.

V—bw,ir

et g

ri}

f - with flux of magnitude £ié/m incident from the right if the potential were absent,
E E< 1o

6. Show that the conditioas for a bound scate {5-35) may be obtained by
requiting the vanishing of the denominators in (5-25) at # = /. Can you give 2n
atgument for why this is not an accident?

7. Consider the scatteting matrix for the potential
' A
Vix) = = #(x - &)
a

Show that it has the form
Y 2ika

ikd
2ika — A Zike — N°
—_— eﬂ‘kb ——z_ié.i_
2k — A Xbka — A

Prove that it is unitacy, and thac it will yield the condition fot bound states when
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the elements of that matrix become infinite. (This will only occur for A < 0.)

8. Calculate o in Eq. 5-83, which will localize the parcicle as far as possible
on the right side of the origin.

9. Work out in derail the wave functions for the three towest eigenfunc-
tions of the harmonic oscillator.

10. Considet the hatmonic oscillator potential perturbed by a small cubic

term, 50 that
1
Flx) = bt (x’ - - x‘)
a2

If «# 15 latge {compared to the characteristic dimension (/7)1 estimate how
long it takes a particle in the ground state to “leak out” to the region on the far
right. Wore thar with this perturbation alone, there is no lowest energy state,
since for latge enough x the potential becomes arbittarily deep.

11. Consider the potential shown below

Ll
-———-E——— ¥ix)
X
R
with
R+ 1

V(JC] = [7+!) x> Ry

2mx

Estimdte the lifetime of a particle of enerpy E in this potential. (The ourside
potential represents a cenuifugal barrier in a three-dimensional world.) Express
yout result in terms of the dimensionless tatic J/AR, where E = %tk /2m. Take
I»1

12. Consider the Kronig-Penney pocential with
A= 3rx
{a) Make a detailed plot of

A osinx
cosx+5

X
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s a funcrion of x = 4a.

{b) Show ¢hac forbidden energy bands start just above &« = pr.
(c) Show that the allowed energy bands get narrower as A increases.
(d) Plot the encrgy #%4%/2m as a function of ¢,

13. Consider the mode] of 2 malecule defined by (3.71). Show that when
s large,

AP gH

tae =

mat
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The Kronig-Penney model is also discussed in detsil in:
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Inc., New York, 1071, Chapter 9,

For 4 more complete discussion of bartier penetration, using the WKB approxi-
mation, see 2ay of the more advanced textbooks listed at the end of the book.






r

chapter 6

he General Structure of
ave Mechanics

In Chapter 5 the energy eigenfunctions, that is, the solutions of the
tion

Has() = (o) (61
_ ta _L(% _d_)* .
a2y = LR LY L g (62)

were obtained for 2 number of physically intetesting Hamiltonians, The Hamil-
waian openator H wes emphasized, because it is this operatof that determines
the time development of a system. The initial state of 2 systemn can be described
by any wave function ¢(x) ,which is only constrained by the requirement that

f BdH ) W) < (6:3)

that is, that it be square integtable. The ¢(x) can, withour loss of penetality, be
multiplied by a constant, s that it is normalized

[acvw v =1 (60
The time-dependent Schridinger equation

B 2

T op V) = Hidxi) (6-5)

describes the time development of the wave furiction, and given the energy
- eigenfunctions ax(x), this ptoblem can be solved immediately. What goes into
' 111
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the solution is a general theorem that states: an arbitrary function ¥{x} can be
expended in a complete set of eigenfunctions of H, that is,

¥x) = 3 Cauxlx) (6-6)

If we choose the eigenfunctions of H to be normalized, and if we take into
account that che eigenfunctions comesponding to different values of E are
orthogonal, so thar

f () nge(x) d = dgge (6-7)
a result proved in Appendix B, then
[#utw - 3 G [ it o) s
= E Cg Szp
B
= Cp {6-8)

that is, the expansion coefficients aze determined. Now the time dependence for
each energy eigenfunction is

wx{x,i) = up(x) e B (6-9)
. a5 can easily be seen whea the above is substituced into (6-5), and heace
Wixd = 2 Cre 0 4p(x) (6-10)
“®

It should be noted, as we have learned from considering & large number of
examples, that the energy eigenvilues may take on discrete values and/or con-
tinuous values. We speak of the speciram of cigenvalues being discrete and for
coatinuous. Thus (6-6) really reads

¥ = T Cora ) + [ 4BCCB) ) (611)
corresponding to the two possibilities, and (6-7) reads
f uga (%) nulx) dx = bua (6-.12)
for the discrete values, and
f u;;_(x) up(x) dx = 3(E — E) (6-13)

for the continuous ones, This is not che only possible choice. As we saw in our
solutions of problems with potential wells or berriers, the solutions of the energy



The General Structure of Wave Mechanics 113

cigenvalue equation can be made up of fundtions that far from the potential ate
momentum eigenfunctions. There is 2 relation between the encigy and the
nomentum (F = p2/2m away from the potential), and it turns out to be possible
o normelize the solutions so that che righe side of (6-13) is eeplaced by 8(p — )
of, in thtee dimeasions by s(p — p).
' We also postulated an intetprecation for the expansion coefliciens; |Ce|?
is the probability that an energy measurement of the stere described by $ix)
-yields the particular eigenvalue E. Any particular measuremene can only yield
an eigenvalue, but in contrast to classical physics, we cannot predice which one
¢ will be: we only heve the probability that it will be a particular value E. In
‘guanium mechanics, as in classical theory, a measurement must be repio-
ducible to have any meaning, Thus if an observer, upon making a single meas-
utement on 4 System finds that the energy is, say, By, then a subsequent energy
-pacasuternent for that system must again yield E,. Hence, after the fitst measure-
ment, the state of the spstem is described by 2 new wave function, namely the
tigenfunction g, (x); only then will a repeated messurement yield E;, with
probabilicy 1. The expression 2 measurement projects a state into an Eigenstate
of the observable™ is sometimes unsed,
- The expansion theorem may be viewed 25 a generalization of the expansion
of & vectar A in terms of orthonormal unit vectors in an N-dimensional vector
space : )
) A= by + sty + ... + anty o (6—14)
The unit vectors i satisfy

-l = 8 (6'15)
. and are the anelogs of wg(x), The coefficients 4, ere given by
ay = ix-A (6-16)

- and they ate the analogs of the €. We shall often use the language of vecror
spaces in alking about quantum mechanics. Thus we shall often refer to the
cocfficients Cp as the “projections” of Yix) “along” #r(x}, and the quantiry

Ca = f h00) ¥  (617)

will often be called 2 scaler procict, We will, following Dirac, introduce a con-
vepient notation for the scalar product: :

f SV de = (gly) (618

The similarity between the acceprable wave fuactions, and the collsction
of all N-dimensional vectars is actually quite deep. Just as the sum of any two
vectots yields a vector :
A+B=0C (6-19) .
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and the product of a vector with a number is again a vecror, so will the sum of
any two square integreble functions again be a square integmable function, as
will the product of a squate integrable function with an atbimary (complex)
sumber, In both cases, provided we define che notion of a scalar product

{A|BY=AB (6-20)

in one Case,
Bld) = f dx ¢*(x) §(x) (6-21)

in the other, we have a linear vector space. The only difference is that in quantum
mechanics, the vector space is infinite dimensional. In facr, since in (§-21) ir is
the continuous label x that plays the role that the index / plays in

by

AB= 2 ab (6-22)

=l
we see chat the space is continuously infinite. This does mean that 2 proper
mathematical treatment of such vector spaces is much mate complicated, since
questions of convergence of integrals like (6-21) have to be faced, and in con-
trast to & finite dimensional space, proving completeness is much more difficult.
In mathematical perdance, the squate integreble funcrions form a Hilbert space,
and the energy eigenfunctions form a complete sev of basis vectors.

In vecror spaces, be they finite dimensional or more general, an operatot is
defined to be something that transforms a vector into apother vector, of in this
case, & square integrable function ioto another square integrable function. We
are actually interested in Jnear operators that have the peoperty that

Hia; + fa) = odfy + SHibs (6-23)

The simple cxample discussed in Chapter 4 showed that the expectation value of
H, defined by

@y = f VA0 B e (6-24)

was real. This is © be expected for a physically measurable quantity, and i¢
generalizes to the statement that the expectation value, for all (x), of an operacor
fepresenting an observable quantity, has to be real. We called operators that
had this propecty, hermisiaz. :

For an arbitrary linear operator A, we have

3o = [vrier i) e @)
aad

(A} = f (AU 1™ ¥l) (626)
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The aperator A' (pronounced A-dagger) is defined by the relation
[ [Ap())* dlx) dx = f #4(x) AN} dx {6-27)

“and is called the hermitian conjugate aperator. For example, the relation

Ja(%) o= [t - [aesr o oy

shows that
(i)’f___i
)

_Similarly, the hermitian conjugate of the operator

£
(E — m")
(fz _ 9* ra Es)

@) = f [HEG)* 1) ar

is €asily shown to be

"For a hermitian operator

= f&*(x) HYW(x) dx
= {H)
= f Px) Hf(x) dx (6-28)
and since this is true for all Y{x), we say that
H' =H . {(6-29)

The Dirac notation for scalar products that involve operators is

| f ) A e = (81 4]¢) (6-30)
Thus!

@ldley — f [ACLO]* () di

* The definition of A% in {6-27) only involved the expecration value of A, It is easy
to check, by writing ¥{x) = #(x} + A#(x) with X an arbitraty complex number, that (6-37)
implies the step between line onc and line two in (6-31), .
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- f V00 Alo() dx
= ]4'e) (6-31)

‘The rezson for our dtive coward generalicy is, as already seen, the fact that
H is not the only operator of interest. Other physical abservables, such as the
MOoeNtum OpELAtor foy, PaLity, position, and so on are represented by hermitin
opetators. We shall use the letcers A, B, C. ... for operators, and since we are
only dealing with opetators that represent observables, they are all hermitia
thac is, . .
A=A
B=p
and so on.
All hermitian operators have eigenfunctions, that is, there exists z set of
vectors that have the property that the operator acring on them reproduces them,
except for 2 proportionality constact, the eigenvalue

Aux) = qu (%) : - (6-33)

The spectrum of eigenvalues, as for the Hamiltonian, may be discrete and/or
continuous. The spectrum of momentum eigenvalues was found to be con-
tinuous; that of the perity eigenvalues, =1 was discrete. As for the energy eigen-
fuactions, those corresponding 1o different values of z are orthogonal, and the
others may be chosen to be normalized, so that we have

f a2, x) ug(x) dx = ¥a.a') (6-34)

of, In Ouf NEW notation
{dajrie) = Ba,a") (6-35)

Hete 8{a,4"} may be a Kroenecker delta Sa if the eigenvalues are discrete, or a
Dirac dela function 3(2 — 4’) if they are contiouous. It follows from (6-33)
and (6-34) that

a= f wo* (%) Aug(x) dx (6-36)
that is,
@ = (a¢|A1x_J.} (6-37)

Thus the eigenvalues of a hermirian operator must be real. Since the resubts of an
individual mezsutement of the observable described by A must be one of the
eigenvalues, this must be s0. '
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Juse as for the Hamilronian, we found in Chaptet 4 thac the eigetifunctions
of othet hermitian operarors also form a complere sef, 5o chat the £xpansion
‘thearem '

x) = X Comalx) {6-38)

G- f L) V) de = (na¥) ©39)

olds. The interpretation of C, is again that of a prodabilisy amplitude, that is, | C.|*
the probabilicy of inding the eigenvalue « in making a measurement of A cna -
ystem described by y(x). Again, after 2 measurement, rcproducibility requires

.. In both the problems discussed in Chapter 4, the particle in the box, and
the free particle, we found thar the eigenfonctions were simultaneous cigen-
functions of H.and another operatot, parity in the first case, momentum in the
second, and we saw that in both cases the 2dditional operators commuted with
'H, Let us now examine the general conditions under which this happens.

The eigenfunctions #,, cotresponding 10 the cigenvalue z of the operacor A,

Ausx) = aunix} {6-40)
will be simultaneous cigenfunctions of another opetatar B, when _
BaJx) = bu(x) (6-41)

This, however, implies that
| Wi} = Abin(x) = bAun(x) = abua(x)
©and
BAuy(x) = Bauy(x) = aBus{x) = abu.(x)
that is, that
(AB — BA) wy(x) = 0 (6-42)

_If this were to hold for just one ., it would not be very interesting, but if it
holds for the complete set u,, then it means chat for all square integrable func-

tions Y(x) = ); Carea(),
2. ColAB — BAY 2.() = (4B - BAY Conls)
= {AB ~ BAY¥(x) = ¢ (6-43)
that is, the operators commute

4.8 =0 (6-44)
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Conversely, if we have two hermitian opetators A and B that commute,
so that {6-44) holds, then

ABudx) = BAu.(x)
= aBr,(x) {6-43)
that s,
A[Bea(x)] = 2[Bun(x)] (6-46)

Thus the function Br{x) is alsa an eigenfunction of A wicth eigenvalue . [}
there is only one eigenfunction of 4 corresponding to the eigenvalue «, then
this implies thar Byg(x) must be proportional to ug(x), chat is,

Bu (%) = bua(x) (6-47)
Then #,(x) is 2 simultancous eigenfunction of Aand B, This situation, in which
the eigenfunctions of A are not dzgenzrate, is the one that we saw for the particle

in the box. If, on the other hand, there ate two eigeafuncrions of A coftespond-
ing to the cigenvalue 4, that is, we have 2 twofold degeneracy

AP () = 2l (x)
AnP () = aulP{x) (6-48)

a situation Alusteated in the free particle example, then we can only assert chat
Bx\V(x) and B#{(x) must be linear combinations of #0(x) and 8P (x):

BalP(x) = buyalV (%) + braws (%)
BaP(x) = b (x) + bagul?(x) {6-49)

[t is evident, however, that we can rake linear combinations of these equations o
obtain equations of the type

Bel () = b (%)
Br{P(x) = b0 () {6-30)
For example,
Bl + 2af®) = (bu + Mom) 27 + (b2 + M) 58
= balul + )
provided we choose h such that
bzt Ms _
bl]. + le .

Fhis is a quadratic equation and thete will be two values of ), cortespoading to
the two cigenvaiues by It is more appropriate to denote the simultaneous cigen-

A

functions of A aad B in (6-50) by s%(x) and 47 (). Since these camespond o
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different eigenvalucs of the operator B, they will be otthogonal to each ocher.
In practice, for twofold degenemacy, the degenerate eigenfunctions of A, if they
ate taken to be orthogonal to each other (e.g., ¢¢ and e== for the free pardcle
casc), will automatically be eigenfunctions of B.

Even after finding eigenfunctions of A and then making linear combinz-
tions that ate eigenfunctions of a commuting operator B, there may stitl be some
degenetacy, that is, there are several eigenfunctions of A and B simultancously,
with the same # and &. This means that there must be 2 third opetator  that
commutes with both A and B, and the functions can be recombined to be
simultaneous eigeafunctions of A4, B, and C whose eigenvalues distinguish the
degenetate eigenfunctions of A and B. This will go on until there is no more
degenetscy, The ser of mutually commutiog operators 4, B, G, . . ., M of which
our set of functions is a set of common eigenfunctions is called = romplere sef of
comminting obreroabler. We have

[4, B]=4,C=...=[4 M =0
[B. C]=[B, Dj=...=(B, M] = ¢ (6-51)
and so on.
Asy o(x) = aug o(x}
Bug, w(x) = buy ofx)
Mgy (%) = mug, () (6-52)

The state described by wgpo...m(x) has definire values of the observables A, B,
C, ..., M. This is the largest possible amounr of informaton that we can have
about a system all at once. The teason is that if we consider another operator
thar is not some function of (he opetatots A, B, . . ., M (since these commure,
such 2 function is vnambiguously defined), then a measurement of it will not
give a sharp value for the state #u.. (%), In general, if two operetors do not
commute, then a type of uncertainty relation connects the precision with which
the two observables can be determined,

To demonstare this, we must first agree on a definition of uncerrainty.
A natural definition is .

(A = {A%) — {Ap {6-53)

2lso called the dispersion. Tt has the advantage that it does not vanish even if
(4) = 0, and it vanishes if the expectation value is wken in an ¢i genstate of 4.
Note that we may also write this as

AAY = (A~ (4))%} (6-54)
since

(A4 — 244y + (4)*) = (4%) — (A}(A4)
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This shows that {AA)? deals with the magnitude of fluctuations about the mean.
Tt is staighdforward to show (see Appendix B) that

(AAAB) — JAABIY > o (6-55)

Thus for x and p, for which {x p] = 74, it follows that

S

@orapr > 636

Notice that in the derivation no use was made of wave properties, x-space’ ot
p-space functions, ot particle-wave duality. Our result depends enm’ely on the
operator propertits of the observables 4 and B.

Let us now turn to the impottant question of the classical limic of quantum
theoty. To do this we must first study the time developmenr of expecration
values of operators. In general, the expectation value of an aperatot changes
with time. It may change with time because the operator has an explicit time
dependence, for mmplc the opemtor x + ptfm, and it also changes with time
because the expectation value is taken with respect to a wave function that
itself changes with time. If we write

Ay = f V¥ Aples) e 657)

theo
: ey 24
2= [von v e
+ j' VD )

+fw*( ) Aa‘“”’)

( Z;: ) f (j;: H\b(x,t)y ()
+ f Vi) A (,—‘,i H&(x,r))

(Z‘:) ;{ f $¥(x,2) HAY(x 0) dx

- ;— [ ¥, ) ARx 1) dx
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that is,

24} + £ @ ©3%)

In the derivation we made use of the fact that H is a hermitian operator, We
observe that if A hss no explicit dme dependence, then the change of the
expectation value for any sate is

d :

—_— Ay = —
7 A= o (HA]). (6-59)
If the opertor commutes with H, then its expectation value is slways constant,
that is, we may say that the obrervable is 2 coustans of the mosion. If the Hamiltonian
is one of the complece set of commuting observables, then all the gthers are

constants of the motion. .
Let us consider successively A = xand A = p. We first have

d i
5 =5 W)

- H{[ £+ vws))

Now x commures with any function of x,

[Ve),e] = 0 (6-60)
s6 that we anly have to calculate
(2] = plo] + [p,¥1 5
= ZTE F _ {6-61)
Thus we obwmin
Lo (2)

Next we have

G0 = +{[ £+ veon))

= — 5 v (%)

since p* and p evidenty commute. To evaluate che last commutarar, we note that
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i 4

PV W) — Vi) polx) = 7 i [Vl ()] — — V(-T) - 19(1)
i
= 2y (664
s0 that
vl = 5 2 ©65)
and thus
4 _ dV(x)
R ) (654
We may combine {6-62) and (6-66) to obtain
o AV (x)
Ly eh=— (?)I (6-67)

This looks very much like che equation of motion of a classical point particle
in a potential F{x)

d’ Xei _ d V(xet)
m i o {6-68)

The only thing that keeps us from making the identification
xa = {x) {6-69)

15 that .
dV
(%) = s vt (©70)

Under citcumstances where the above inequality becomes an approximate
equality, the motion is essentially classical, as was first noted by Ehrenfest. This
requires that the potential be a slowly varying function of its argument. If we
write

{6.71)
then

(g — z
B = F(or) + G — 40 P + S gy 4
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If the uncertainty (Ax)® = {{x — (x})®) is small, and the higher terms in the
~ expansion can be neglected, then we have
FE) 2 F({x)) + (x — {x)) F'{{x)
= F((x)) (6-72)
It is indeed uue that even for elecirons and othet subatomic patticles, [6-—?2) can
be valid. Fot macroscopic fields (6-72) is a good approximation, and this allows

us to describe electron or proton orbits in an aceelentor by means of dassical
equations of motion,

Problems

1. 'If Aand B are hermitian operarors, prove that (1) the operator 4B is
only hermirian if A and B commute, that is, if AB = BA, and (2) the operator
(A 4 B)* is hermitian. '

- 2. Prove that A 4 A" and (A — A" are hermidan for any operator, as
is A4, :
3. Prove that if H is a hermitian operator, then the hermirian conjugate

openutor of £#7 (defined o be 3. #H*/a!) is the operatar ¢,
n={

4. Prove the Schwartz inequalicy
Wi iole) = [ {pla)®

Note that this is equivalent to cos? # € 1 for three dimensiona! veceots,

(Hint, Consider {§ + ¥ 4 M} > 0and caleulare the value of X that mii-
mizes the Lh.s.)

5. Consider Eq. 6-38 and 6-39. Calculate (p|¢) for an arbitrary ¢ in terms
of (d|u.}, and show that it is possible to write

@) = 2 (luadlule)

In a sense the sum over & complete set of
Z: lya){"ﬂ|

is equivalent to the vnit aperator,
7. If A is hermitian, show thar (42} > g,
8. Consider the hermitian operator H that has the property that
Hi=1
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What are the cigenvalues of the operator H? What are the mgcnvalucs if H is not
restricted to being hermitizn?

9. An operator is said to be unitary if it has the property that
vt = U =1

Show thar if {y|¢) = 1 den {TY|¥) = 1.
10. Show that il A is hermitian, then ¢4 is unitary.

11. Show that if the {u.} form an orthonormal complete set, with

{iclue} = Bup
then the set

l#a) = Ulus)
with I unitary is also orthonormal. (The mesning of the above is a unitary
operator acung on a set of “basis” states yiclds another set of “basis” states.)

12, Use the definition of Ax and Ap given in (6-54) to show that

Ap Ax ~
for a parricle in an infinire box in the seate characterized by the quantum pum-
ber n.

13. Show that if the hermitian conjugate operator A is defined by (6-27),
then

f dx| Ap(x)]* ¥{x) = [ dip*{x) AYx)

(Hinr. See footnote 1, p. 115.)

14. Use the commutation relations between the momentum p aad the
position x to obtain the equations describing the time dependence of (x) and
{#} given che Hamileonians

]
® A=t ot gl 4o+ 9
_i Lt — 2
1)) H + 3mwix® e

Solve-she first ser of equarions (Hamiltonian (a}).
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chapter 7

Operator Methods in Quantum
Mechanics

The discussion of the general structure of wave mechanics placed equal
. weight on the operarors that fepresent the observables, and on their eigen-
- Funcdons, Although the latter were ac one point described as analogous to an
- orthonormal basis of unit vectors in an N-dimensional vector space—which
~ would certainly downgrade them in impotrance—they, rather than the DpEraors,
- seemed to play the leading role in our discussion of the physical problems in
- Chapter 5. In this chapter we will show, using a simple example, {a} that one
can go very far toward finding the eigenvalue spectrum using the opetators alone,
" and (b) that the description of eigenfunctions as 4 basis can be made a lirde
mote abstract, The Jatter is impottant because so far we have oaly considered
functions that depead on x or on P. We shall see later chat there exist abservables
that cannot be associated with x-space in soy direct way, and for chese 2 more
ibstract notion of eigensdate must be developed. These remacks will become
somewhat clearer in the conrse of the solution of our example, the hermonic
scillator problem
The Hamiltonian has the form

2
H= 4 1ty (7-1)
2m
whete xand p ate operatots. We do not insist char pbe tepresented by (A/4)(d/ ).

The oaly vestige of the explicit tcpreseatation that we obtained in Chaprer 3 is
the statement of the fundamental commutation relation

[px] = " (7-2)

! Thete ace few problems that are exactly soluble, whether a5 differential equations or
in operaror form. This example is the simplest and thus most suitable for cur purposes,

127
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Classically, the Hamiltooien could be factored into

“”(E"“vﬁﬁ)(ﬁ”’w =)

but because p and x do not commute, we have

(Ve ) (o k)

L 2 B
2m+2x’ Z(Px )

= H - $hw (7-3)

Ler us now introduce the notation

_ e
A—V2x+:\/ﬁ

_ fm g
A"—J:x e (74)

Since x and p are hermician operators, the labeling of the second operator with «
dapger is appropriate. The two operarors do not commute. We may compute

441 = N% % "viTm] + [" v i?"]

=# ' (7-5)
and sewrice the Hamikonian in terms of the new operators,
H = Y+ wttA (7-6)

The simplicity of the Hamihonian is reflected in che simplicicy of the
commutation relations of Aand A" with H. We have?

{HA4) = [wA'A,4] = o[A" 4 A
= —fid (7-7)

and similarly
[H AT = [wAlA, AT = wdl4,4)
= FAt (7-8)
*We shall make repeated use of the sules for commurators exhibived in Appendix B:

[A+ B <] =[A, €]+ [B. Cland (4B, Cl = AlB, C] + [4, (] B
It is, of course, essential that the order of opetaters not be distucbed.
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Incidentally, it is a useful technical trick in .dedving commutation telations
-involving hermitian adjoint opetators to recall thac

[4B] = {(AB — BA)t = B'A' — A'B' = [B' A1) (79)
I particular
(HA] = [4,H] = — [H.A
= {~fwA)’ (7-10)

from which (7.8) follows.
Let us now write down the eigenvalue equation, which reads

Hug = Eug (7-11)

the past, whenever we wrote down such an equation, the implication was
k- that H contained some differential operators like 4/dx and that x5 was a function
“-of x. That was approptiate when our opetators were specifically tied to the space
defined by all'square integrable functions of x, but in what we are doing now,
we are not being very specific about what our operators operate on. We shall
assume that they are defined in some abstmcr vecror space, znd reélate thar
abstract vector space to the space of functions of x later. To translate this
ebstraction into the language that we use ta desaibe the equations, we shalf not
speak of eigenfuncrions but of eigensiates, and what we called wave functions
or wave packets, we shall now call sase #ectors, Thus the eigenfunction zgp, . .(x)
. of the maximal commuting set of observables can be replaced by the eigenvector
ot eigenstace of this maximal COMMULInG set, 4g5,,,m; the labels a, &, ..., m give
- the values of the eigenvalues of the observables 4,8, ..., M, and this descrip-
. tion, withou the x, does explicitly show the maximum information content.
' Let us now take (7-7) and have it act on 2.

HAug — Afng = —hadsg
With the help of (7-11) this becomes
HAug = (E = fo) Aug (7-12)

This equation states that if #z is an eigensuate of H with cigenvalue E, then Axp

is also an eigenstate of H but with cigenvalue E — fiw, that is, with energy
lowered by onc unit of :

e = faw {(7-13)
We may therefore write
Aus = o(Ey ug_, ' (-14)

The constent «(E) is necessary, siace even if ug is normalized to 1, Aug need aot
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be. In our emphasis on separation from x-dependence; the normalization condi-
tion thar was always writcen as

f&@wwﬁ=l

is now, using the nowtion defined in (6-18), written as
{erlwe) = 1 {2-15)

We shall always normalize alk eigenscates o 1, ualess they belong to the con-
tinuum, in which case :
HE — E)
or §(p — 1) (7-16)

If we now apply (7-7) w the stte #p.,, we find, in exactly the same way,
that Awg_,, of, equivalently, A% gives a stace of energy E — 2¢. Thus by
repeated application of the operator 4 to any kg we can GENCrate states of lower
and lower energy. A is appropriately called a Jpwering aperator. There is 2 limiz to

how many times it can be applied, since it is a consequence of (7-1) that H must
always have positive expectarion value, For an arbitrary wave function

wlply) = f Y (x) pAYix) dx = [ [P(]" () dlx

{uglag) = {

= [ i i)

= ﬁ’fl:#{x)fdxi’dx >0 {7-17)
which we rewrite in our coordinare-deemphasizing way as '

WIFl) = Mg
={Wipr>o {7-18)
Simi]é.rly, since & is also a hermitian operater
Wt} = Mlxd)
= {ablxg) > 0 (7-19)

and all scalar products of vectors with themselves yield the squate of their
length, that is, a positive numbet, Thus cur lowering procedure must end some-
where, and there is a graund state, which we will now denote by #, beyond which
lowering ends. This must mean chat

Atin = © ' {7-20)

JEere

T -
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The energy of .thl‘: ground state is
Huy = {wA'A + b)) wy = Yo (7-21)
Let us apply (7-8) to the ground state: .
HAtws — ATHuy = fwA'ue
that is,
HAwy = (s + 3hew) Altiy (7-22)
‘The energy has been raised by one unit of Aw, and AT is aptly described 25 2
raising operator. We will change our notation a linle, namely, label the state by

the number of energy units ¢ = Jiw it has over the ground state energy $ie.
Thus we write

Alsy = omy . (7-23)
Note that (7-12) implies thar

An, = 'y (7-24)
so that A' and A move up and down the same “ladder.”" All the scates may be

generated by repeaved application of A' 10 x. One consequence is thar the
energy spectrum is given by

E={n+Hhe nx=o012 ... (7-25}

We have succeeded in obuining the energy spectrum withowr solving any
differential equation. We have also a general reptesentation of the eigenvectors

1 Ay
= () - 7o

where we have put in the cotrect normalization conseant.? With the help of this
tepresentation, we can prove the orthogonality of eigenstates corresponding 1o
different enetgics, What is involved is an evaluation of an expression of the form

(e A AP 0}
and this is done by commuting A's through the A"s to the right, where, st the

? For rbe algebraically oriented reader, we describe briefly the way in which this is
derived. With (AT)"ug = g we bave [6]? dwalaed = fou|? = {AD)® wol€AT}" 4y) =
{un] A*[AT)Ras).

Now we may use {7-3) to derive the relation A(A") = A=A + (AT)*4] Whea
this is put berween {vo] . . . o), the second term on ehe Lhs. venishes and we get the re-
" cursion tehaton et = ak|ea |l

L e |t = mlE q]® = wl(E). We can, without loss of generslity, chooge o, real,
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end, they act on #, giving a vanishing resulc. Using (7-5) we see, for example,
that

AAN = A(A'A + B (A = RAAY
F AAAA + B) AT = SRAAD + A4 A

Fhe last term, sandwiched between the », gives zero because Ax, = 0, and the
fitst texm can be manipulated in the same way to finally give 677A4". Now

<.ﬂnl1"3n) = (A.Mn| Hu) = { (7'27}

s0 that we have pmvE‘d. {ualrz) = 0. This procedure, when followed in the
genetal case, allows us to prove thar '

{unlan) =0 m#=n (7-28)

The staxement that 2n atbitrary stare vecror can be expanded in eigenstates
of H now reads in the coordinate independent way

$= 3 Cu (7:29)
and SINCE (g |tin} = Bpn, We have
Co = (inl$) (730

We digress briefly from the main thrust of this chapter to point out that
the raising and lowering aperators may also be used to advantage in solving the
harmenic oscillator equation. In x-spage, (7-20) reads

P b i) () = -
(J: + \/5:‘55) ox) =0 (7-31)
Using the x-represeneation of the operator p, p = {i/#(d/d) this is

(mwx + %) dlx) = 0, (7-32)

This is a simple differenrial equation, whose solution is
aolx) = € o T (7-33)

The constant € is determined by the requirement that #;(x) be nommalized to

unity:
ieof

» i o~/
_ C’(ﬁ—w)m
o
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Li4
c=(2) (739

. We may also obuin the excited states by working out in detail

ﬁ—nﬂ
(¥} = v (A mlx)

AR & 4y .
:\—/—;(E) ( P 2;;;;_): /2 (7-35}.

This is, in fact, a very compact way of writing out che general solution of the
differential equation.

We have succeeded in making the point that one can solve for the igen-
‘values of the harmonic oscillacor using operator methods alone. For this problem
all that is needed to specify the eigenstates is the energy, that is, the integer
#=0,12 ... appering in

thet is,

E=(+4+ e

ead thus the compiete set of commuting obsetvables coasists of H alone.4 Thus -
the label # on the eigenstate &, describes its whole content. We would therefore
-be quite willing to give up the privileged role of the eigenfunction in x-space,
#a{¥), except for one point; u.(¥) does provide us with maote information in that
it gives us the probablity density [via | #.(x)|?] of finding the particle at x, Does
this additional content single our the x-space wave funccion after all? Let us
fecall the role of the wave function in momentum space ¢(p) that appears in
Chapter 3 for example. As the Fourier transform of che x-space function it
might have had some claim to a pivileged role, but later, in {4-59), for example,
we exphined char ¢(p) was “'merely” an expansion coeficient of an arbivrary
¥{x) in cigenstares of the momentum operator, and that is why its absolute
square yielded the probability of finding 8 momentum p for that seace. Similasly,
the fact thac |y(x)|* yields che probability deasity of finding x for the position
of the system could be interpreted by the srcement that ¥(x) is the expansion
coefhicient of an arbiteary abstract state in cigenstates of the position opetator
Xap. We write the eigenvalue equation abstractly as

-‘\‘oﬁz = mz . (?'36)

keeping x a5 a subscript to seress that it is « label of the cigenstate, just as # is the
label for s, The spectrum of x.p, a hermitian opetator, is continuous, so dhat

* The parity is conemined in the label n. Stares with # sven are positive patity states, -
and those with # odd have negative patity. This follows from the facr chat undet reflection
Aand AY ame odd.
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the expansion theotem, instead of taking a form like (7-29), really reads

,{:fdx %) ¢z (737}
Since the eigenstates defined in (7-36) form an orchonotmal ser,
{#=ldp) = $x — &) (7-38)
we can derive
Cx) = {¢:[¥) (7-39)

and this quanciry is the probability amplitude for finding 2 particle at x—more
specifically, the measurement of the observable x will yield the igenvalue x with
peobability | C(x) | All we have o do is change the notation, rewriting (7-37) a3

y= f () b, (7-40)

. to show thar the wave function in x-space hes no privileged role, and we use it

. only as a marter of convenience, The basic principles deal with opetators and
their eigenvectars and eigenvalues in an abstract space, and the rest is & matter of
representation. The lawer is, of course, cencial in obtaining numbers, which is
what physics 15 all about. Thar is why we will not lay too much stress on the
formal strucrure of the theory, and continue using wave functions, Later we will
have to dezal with operatots that have né classical analog, such as the intrinsic
spin of electrons and other particles, and thete we will exercise our freedom to
use other representations.

We conclude this chaper by discussing the time development of a system
in our tepresentation-independent way., The dme-dependent Schrddinger
equation -

&
is now an opetator equation in an abstrace space. J{f) is a vector, and it points

in @ dirsction thar depends on time, The equation can easily be sclved. The solu-
tion is

i ) - (74D

i) = ¢ H glo) (7-42)
where (0) is the vector at time # = 0 and the opetator ¢ ~** is defined by

o - '_g__ iHi i

(7-43)
= ”!

The solution (7-42) allows us to describe the change wich time of the expecra-
tion value of some operator A that does not have any explicit rime dependence:

(A = (5 (s}
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= (™™ Y0)| 4 T yio))
= W) AP (o))
= (0} A0) $(0})

= (A ® (7-44)
We used
(e~ Wt = JHUA g (7-45)
along the way, and defined
A= £ g A (7-46)

What (7-44) says is that the expectation value of a time independent opentor A
on a state that vaties with time as (7-42) may be written 25 the expectation value
of a time-varying operator A(#) (given by (7-46}] in the time-independent seate
#{0). This is very useful in the formal discussion of quantum mechanics, since it
is convenient to set up a basis of orthonormal eigenvectors in the abstract vector
space ence for ll, and not wotry about how the basis vectors change with time.
When we do this, we are working in the Heiwnberg picsare, whereas keeping A
without time dependence means that we are working in the Schridinger picure.
The result is the same, whatever picture we use: this is analogous to the option
of describing 2 rotating body telative o a fived ser of axes, or of describing the
body at rest in a rotating coordinate system, The choice is one of convenience,
If we do work in the Heisenberg picture, then stite vectors are fixed, and we
need not refer to them. How an observable vaties with rime is determined by
(7-46}, which yietds :

d H 75770 ) —ilksn i f —ika
el = B g g -k D g iHigh
Z A 7 ¢ % A e
L aaty -2 ann
i %

— — i.A) (747)

2 form remarkably like (6-59). That equation was an equation fot expéctation
values, but since its form was independent of the stace in which the expectation
value was taken, it had to reflect operator properties, and (7-47) shows that
explicidy.

For the harmonic oscillator

H = 0A'A + o
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and since H is 2 constant of the motion, we have

H = wA's) A1) + Y {7-48)
We can also show, using (7-46), that
[AG), A7@)) = & (7-49)

Hence (7-7) and (7-8) sull have the same form, dnd we get

d )
Y AN = —ddln)

% A = iw AN {7-50)
Thus the time dependence of A(#) and A'() is obtained by solving (7-30}, with
the resule that
A = 7 A)
AN = & A(o) (7-51)
Using. the relarion (7-4) it is easy to show chat
28y = p0) cos wt mx(o)_sin wt

£0)

x(r) = x(0) cos ot + o sin wf {7-52)

expressing the operztors x(#) 2nd #(£) in eerms of the operators x(0) and p(0).

Problems

1. Use the commutation telation {7-5) and the defnition of the state z,
given in (7-26) to prove thar

Au,, = v #k Hny

(Him. Use induction, that is, show that if this reletion is true for # it is woe for
= - 1, and establish it direcdy for # = 1.

2. Use dthe above relation to show that if f{A') is any polpnomial in A,
then _
af (A1)

Af(AY) 1o = RS0

E ]
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Nore that tepresenting A in the form

d .
A=K —
dAr
is consistent with the commutation relation (7-5) 2nd is quite analogous to the
representation

w;l:ﬂ

4
dx

3. Calculate the form of {4n|X|wn), and show thac it vanishes unless
n=um= 1. :

(Hsms. It is sufficient o calculate (| A|#w) since (a| A am} = (Au,lun) =
{ip| Al2, ). Use the results of Problem 1)

4. Use che results of Problem 2 to show that
MAAY 1y = F(A" + M) o _
(Hint. Expand the exponential in 4 series, and use the fact thar

fleta) = LA e

P:

Fote) = = gt
to work out this problem.)
5. Use the results of Problem 4 10 establish the operator relation
PALAT) M = f(4" + M)

Note chat an opetator refation must hold when it acts on an arbitraty stare. Ler
an arbitrary state be of the form £0A") &y, Thus what must be proved is that

M LAY M g( A1) vy = JlA' + ME) 24N m

This can also be proved from the general relation
A
M AT M = AN N[ 4,4Y + o [A, [A,.4] + ..,
6. Use the above relption to prove that
AT gt s
The procedure is the following. Let .
ALY o had F(3)
Differentiation with respef.t to ) yields

(@A + bAY) MeATIAY _ | 4 pad B\ + 1 ‘i;?
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that js,

(a4 + bAt) M FQ) = aA M (FN) + &7 %-

Use Problem 5 to show chat

aF
s @AY — habft) F(M)

so that
FiA) = ehM' P L
7. Use the procedure of problem 5 to show that
M A ™M = f(A — MR
Show from chis thac,

e.w-H-é:lr B

using the method oudined in Problem 6.
8. Use the above result to show that
b = S VImb AT (s ATWel A, —(hE dia)
Note that x = (1/4/2ma)(A + AD
Use this expression to calculate
<”lll e“‘"l wy >

9, Show thar the result obtained abave is the same as the one obtained

from
f dx 1(X) &%= uglx)

10. Use the geperal operator equation of motion (7-47) to solve fot the
time dependence of the operavor x{#) given thac

H= P—z(l + mgx(s) ;

it. Consider the Hamiltonian describing 2 one-dimensional oscilator in
an external electric field.

_ PO L i) — el
2m

Calculate. the equation of motion fer the operators p{#) and x(#) using Eq. 7-47
and the commuation relaton

&
(pact) =
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Show that the equation of motion is just the classical equation of motion. Solve
for p(#) and x(7) in terms of £(0) and x{(0). Show that

[(#(e).x(e)] = 0 fors 1
This shows that operators that commaute at the same time geed 0ot commute at
different times.

12. Use Eq. 7-35 to calculate che cigenfunctions for » = 1, 2, 3. Nore, Be
sure t0 keep track of the ordeting of x and 4/dx in the expansion of the binomijal
scries.

References

The material discussed in this chapter is also teated in almost all of the books
in the reference list at the end of the book. The scudent is encomraged o look
up some of them, since it is always vseful to see the same basic material pre-
sented from different points of view.






chapter 8

N-Particle Systems

Out discussion of a single particle is casily geoeralized w an N-particle
system. The N particles are described by a wave function g{z1, xe, . . ., Xx) that
is notmalized such that

f...fdx‘;dxg...dxpw(xl‘x,,._.,xy);3= 1 (8-]}

The interpretation of |Y(xy, xs, . . . , xx)|?is a generalization of the interprera-
tion of |y(x)|7 that is, it yields the probability density for finding particle 7 at
xy, particle 2 at xp, . . ., particle N at xy. The time development of such a wave
funcrion is given by the solution of the diffcrencial equation

;ﬁ-% Vo, . .., x0) = Bz, ...,z 0 {(8-2)

whete the Hamiltonian is again constencted in correspondence with the classical
form

N 2 .
He 22 4 vt ne . x) (8-3)

ot 2m

as

= —hTf—-— —— _ o ]
\ﬂ 3 (2”1 axlg + ... + 2y axNg) + V(xl, [ xh") (8 4)

The whole formalism of quantum mechanics developed before is easily gen-
eralized, with the proviso that opetacors describing singte pasticle ohservables
commute when they refer o diffetent particles, for example, ~

&
(pexl = ~ % (8-5)
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If chere are no external fields, such as the common gravirational field of the
earth, or externally imposed electric or magnetic fields, then the potential energy
can only depend on the relative sepagation of the particles, chat is,

¥F= l;(xl —_— Xy, X1 — X$ o s XN T XN) (8'6}

This must be the case, because in the absence of any external agency that some-
how detesmings an “origin,” the displacement of the whole system should not
change any physical properties of the system. ln other words, the form of the
potential (8-6) is a consequence of the invatiance of all physically significant
quantities under the mansformation

xi— i+ a (8-7

A vety imporcant special case of (8-6} is the case of cwo-body forces, in which
case

V=2 Vix— % (38)

> f

"The summation is over aif indices 7 and §, subject ro the condition 7 > j 10 avoid
double counting, and the counting of i = j Actually, in the description of
electrops in an avom, we will be dealing with the common Coulomb potential,
as well as the electron-clectron repulsion, and there the nucleus provides an
origin. The potential in that case is a three-dimensional generalizarion of

N
Y W) + X Vin — x) (8-9)

When there ate no external forces, then in classical mechanics the total
momenrum is consetved. This follows from the equations of motion

A 2 ) (210)
' 7 = o X1 Xy, X1 .y TR 9 S | XN 2
a consequence of which is thar
d dx; 0
?E‘ mg? = - Z’, s V[x; - X, .. XN — XN) (8'11)

=0
The teason for che vanishing of the right side of the above equation is that for

every argument in ¥, there are equal and opposite contriburicns that come fram
3 0/dx; acting on it. Thus

s
P= ol 812
E me | (8-12)

js a constant of the motion.
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In quantum mechanics the same conclusion holds. We shall demonstrate
it by using the invariance of the Hamiltonian under the transformation (8-7).
The invariance implies thar both

Hﬁg(xl, Xe, o - ., xm) = E:m(x;, X% .o, xx} {81 3}
and

Hug(xi+a, %+ a,. .. 53+ &) = Brgleit ada+ e, . .., 2y + & (8-14)
hold, Let us rake & infinitesimal, so that terms of 0(¢*) can be neglected. Then

o]
:;(xl-l-—a,.,.,x;v—f—a}_za(xl,,..,x_.\r)—t-a—:;{x,,,..,x”)

x;

o
+4_H(X],...,XN)+...
Ebcg

0
ep(ey, . L, xw) 4 d ; a{u(x,,. R
and hence, subtracting (8-13) from (8-14)

x N
aH(E £) #plxy, ..., x¥) dE(E .,a_) axlxs, - .., %)

(

g

o Eﬁg{x[, e XN

-
]
-

M=
o
N

N0
=4 ; a—x') Huglx, . .., xx) (8-15)
"H we now define -
bl N
P=%§£‘E£;«- (8-16)
we see that we have demonsuated that
(HP — PH) wpl(x1, . .., x5} = 0 (817)

Since the energy eigensuaes for Noparcicles presumably form a complete set of
states, in the sense that any function of x4y, Xs, . . . , xy can be expzaded in terms

of all the ux(x1, . . ., xx) the abowe cquation can be trapslared into
. [HP ¢{x, .. .xa} =0 ' {8-18)
for ally(xy, . . ., %), thac s, inko the opetator relation
P} = 0 (&-19)

) /
This, however, implies that P, the toml momentem of the system, is a conskant of

the moidon. 'This is 2 very deep consequence of what is zeally a statement aboge
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the nature of space. The statement that thete is no origin, that s, that the laws
of physics ate invariant under displacement by a fixed distance, leads to a con-
servation law. In particle physics there are no potentials of the form that we
consider here; nevectheless the invariance principle, as stated above, stll leads ro
a conserved cotal momentum.

Out main intetest will be in the swo-particle system, which we discuss next.
For two noninteracting particles we have the simple Hamilronian

ot

2981_ 2”2

H-= {8-20)
We might expect thar since the two particles are totaliy uncorrelated, the proba-
biliey of finding one at x; and the other at xy is the ptoduct of two independent
probabilities

Plxs, x2) = P{x1) P{xs} (8-21)
Thus we expect that the solution of
e it o :
(-— Tm-a_x;’i — EIIDT?) w(s, xu) = En{o1, x2) (8-22)
should be separable into
alxy, xg) = g (cn) rafxs) (8-23)

Substitoting this into (8-22) and dividing by #(x;, x2) we get
— (B 2m)(Pnln)/dxi®) | — B 2ma) (Popalead/ ) _
$u{x1) Galxs)

The two terms in the equation depend on diffetent variables, and that is why we
set both of them equal to the constants E; and Fp sespectively:

E  (8-24)

E=F + Es
5 dzd’l[xl) .
- E'———"—. i Ed1{1)
B gl
2wy dx? Eabix) (829
The two equations age easily solved, and we get
sl = C* ik (8-26)
with
b = 2m.Eq b = 2y By (827

#* it
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Let us now rewrite the solution using the coordinates
X = ) — Xy

= mx 4 MeXy (3-28}
3] + e
that is, the separation between the patticles, and the center of mass coordinare,
If we write
myxy +
ko + kaxy = a{xy — xﬂ) +8 M—!
my+

we find that
B=bh+ k=K
ok o mibs
w1+ ms

80 that the solution has the form

al{x,xg) = € pKX gikz {(8-29)
whete K = £&; + ks is the wave number correspoading to the ol momentum,
and k is the wave number corresponding to che relative momentum. The first

faceor represents the motion of the center of mass, and the second factor is the’
“intemal” weve function. The energy may be written as

72K F A | 1y
E= mtmy t 2 (;-2 + »7) (8-30)

The first facror is the energy of the two-particle system, with mass my -+ m,
moving freely with the total momentum; the second term is the incesmal energy.
If we inttoduce the reduced mars p, defined by
1 1 1
S=— 4= (8-31)
k™ m
then the tenm is B2/ 2, which is effectively 2 one-particle enetgy, namely, that
of a free patticle with mass ; and momentum ##,
When the Hamiltonian in (8-20) is altered by the addition of a potential
that depends on %1 — x; only, then we have

By o :
— 51 sx_tz —_ E;;—OE H(X],Xg) - V(xl — X3} ﬂ(xl,xg) = Eﬂ(xyxﬂ (8-32)
Using the coordinates

X=X~ Xy

X - Pt 2%

» 4
=L 4 L=l t .
“ws + s oy 1+ 2 Xy (8-33)
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50 that
X, = X—b—j—x
el
L .
Xy = X — —x (8'34)
me

" a litcle algebra shows that the equation takes the form

Bo» B
(— mhﬁ_ﬂ SR + V(x)) w(x,X) = Bu(x,X) (835)

If we write
w(x, Xy = 5% $(x) (8-36}
we find thar the equation for ¢{x} is
B 4
- BT 4 v 600 = ot (857
that is, a one-partcle Schrédinger equation with reduced mass, and energy
KK
=E—- —— 8-38
) 2(m; + ma) (&-38)

In Chapter 9 we will obeain the separation in a somewhat more sophisticated
way. We now tun to the problem of identicel particles.

" There is compelling evidence that clectrons are indistinguishable. If this
were not so, then the spectrum of an atom, say, helium, would vary from experi-
ment to experiment, depending on “what kind™' of electrons were contained in
it. No such variation has ever been observed. Similatly, auclear spectra ate always
the same, indicating that protons are indistingnishable, as atc neutrons. Similar
evidence from high enesgy physics experiments indicates vety strongly thar
other particles, for cxample, pi-mesons, ate also indistinguishable, This is a
putely quantum-mechanical property: in ciassical mechagics i¢ is possible to
follow the orbits of all particles (in principle) so that they are never really
indistinguishable. _

We shall leamn that electrons are characterized by an iaternal quantum
numbser, called the pin, and thus their states must include in their description
the spin label. This has a further effect on the consequences of indistinguisha-
bility, which we discuss newr. _

A Hamiltopian for indistinguishable perticles must be completely sym-
metric in the coordinates of the parricles. For a two-particle system, if there is rio
dependence on the spip labels, the Hamiltonian is

fE 2
H=L" ¢ 2 4y (8-39)
2m 2z
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with
Vl,'x;,xg] = Vixex) (8-40)
We write this symmerry symbolicatly as
 H02) = H(2,1} {8-41)

and it is understood that if the Hamiltonian does depend on the spins of the
particles, then the spins are to be incleded in the lebeling "1,” "2."" A wave func-
tion for 20 N-particle system, with all the partidles identical, will be denoted by
¥{(1,2,..., N),and this stands for the mare explicit Y{x1, oz X3, 045 . . . § 2w, o)
where the a5 describe the spin states.

For 2 two-particle system the energy eigenvalue equation icads

H(1,2) 8g(1,2) = Eug(1,2) (8-42)
Since the labeling does nat marrer, we mzy write this as

H{(2,1) #z(2,1) = Eugl2,1) (8-43)
On the other band, using (8-41) we s]st; have

H{1,2) ug(2,1) = Bup(2,1) . (8-44)

If we now follow the formal approach that we used in our discussion of patity,
we will inttoduce an excharge sperater Py, which, acing on a state, inrerchanges
. all coordinates (space and spin) of particles 1 and 2. The definition of Pz implies
that

Piag(1,2) = ¥(2,1) (8-45)
Eq. 8-44 may be written as follows
P13 wg(1,2) = Exg(2,1)
= EPy; #5(1,2)

= Pi; Exg(1,2) : )
= Py Hug(1,2) (8-46)
and this, as usual, implies the operator refation
‘P -0 (8-47)
Thus Pi3-like patiry, is a constant of the motion, Also, like pariy
(P ¥(1,2) = $(1.2) - (849)

50 that the eigenvelues of Pyjare 41, The eigenstates are the symmettic and
antisymmeic combinations

¢(1,2) = # (W(1.2) + (2,1
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#10.2) = 5 90.2) = 92 (8-49)

The fact that Py2 is a constant of the motion implies that a state that is sym-
metric at an iniral time will aiways be symmetric, and an antisymmetric sate
will always be antisynumetric.

It is an important [aw of majure that the symmetry of antisymmetry under
the interchange of two particles is 2 chasacteristic of the particles, and not
something that can be arranged in the preparation of the initial state. The law,
which was discovered. by Pauli, staces that :

1. Systems consisting of identical particles of half-odd-integral spin
(i.e., spin 1/2, 3/2, . . .} are described by antisymmetric wave functions. Such
patticles are called fesmions, and ate said to obey Fermi-Dirac statistics,

2. Systems consisting of identical particles of integral spin (spin0,1,2,...)
ate described by symmetric wave functions. Such particles are called bosons,
and ate said to obey Bose-Finstein staristics.

The Jaw extends to N-particle states. For a system of N identical fermions,
the wave function is antisymmetic under the interchange of any pair of par-
tickes. For example, 2 three-particle wave function, properly antisymmetrized,
has the fonn

¥O123) = T2 lH1.23) — $213) + e
| — ¢(3,2,1) + ¥(3.1.2) — ¥(1,3,2)] (8-50)

whereas the three identical boson wave function has the form

$O(1,2,3) = ;,1—3 [L2.3) + $(213) + $(23.D)
+ ${3.2,1) 4+ ¢{(3.1.2) + $(1,32)} (8-51)

Ler us now consider a very interesting special case, in which N fermions
do not interact with each other, but do interact with a common potential. 1n
that case '

N
H= 2, H (8-52)

[T
where
r
' Hi= "=+ ¥Vlx) {a-53)
28 :
The eigenstares of the one-patticle pocential are denoted by xz,(x} where

Htﬂx.(.n) = Bnﬂgk(x;.) - {8-54)
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A solution of

Hug(l,2,.. . N) = Eup(l,2,...,N) (8-35)
is
4p(1,2, . .., N} = wg,(x0) wg(xa) . .. wg (en) (8-56)
where
Ei+E+...+Ex=E (8-57)

In (8.56) we supptessed the o, [abels that go with the x;. Our task now is to
antisymmetrize (8-36). If there are only two particles, we cvidently have

S41,2) = % [, 00) s ee) — g, (9) ()] (8-58)

With three parcicles, the form is
ﬂ{‘l)(l,Q,ﬁ} = ﬁ [”m(xl) “Rz(xg) ”B.(-"a) - “EI(x!) #Bl(xl) HE.(xs)

+ g (x) wp,(ny) wr (20} — wp (%) ag,(20) ws,(xr)
+ “Ex(xs) “Bl(xl] 33:{"’3) - yEl(xI) 3&(’51) #Ea(xﬂ)] (8'59)
For N particles, the answet is a determinant, the so-called $ajer deserminant:

(1,2, .., N] = \/11\7' up,(x1) smlixs) ... aplxw)

. :.rg,(x.) #ﬂ,(xﬁ) v 31?.(3',\')

”Sn(xl) “Sx{x!!} s “E,v(xN} . {’8-50)

Clearly the interchange of two particles involves the interchange of two columns
' in the determinant, and this changes the sign, If two electrons are in the same
encrgy eigenstate, for example, B, = Fy, and if they ate in the same spin state,
thac is, the spin labels are thelsamc o1 = g3, then the determinant vanishes when
g = xathat is, the elecirons cannot be at the samg place_ Thus the requitement
. of antisymmetry introduces an effective jateraction between two. fermions:
qualitatively we sec that two particlessin the same state tend to stay away from
each other, since the joint wave function vanishes when their sepatation poes
to zero. Thus even noninteracting particles behave as if there wete a repulsive

\ !'The wave function for N identical bosons is totally symmetric, and the general
form is obtained by expanding the determinant in (B-60) and making all the signs positive,
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interaction between them. We will see that a complete ssr of commuting
observables for electrons includes an additional two-valued observable associated
with the spin. Thus a state of given ¢nctgy, anguler momentum, parity, and sp
on, cin he occupied by two electrons (of opposite spin variable), but by ao
more than two electrons. This is a restricted version of the Pasli exclusion prineiple,
The statement “no two electtons can be in the same quantum state”
- strikes one by its global natute, Suppose we have 2 hydrogen atom in the
ground scate on earth and another hydrogen avom in its ground state on the
moon. Does this mean that the two electrons must be in opposite spin states?
To answer this, we note that g specification of the state of the two eleccrons
requites not just 2 stacement that the electrons have spin “up” or spin “down”
and thar they are in the ground states oOf their respective atoms, bue it also
teguies & specification of the encrgy of the atoms. How well do we know these?
Suppose we consider a box of width L, and suppose the atoms are locelized in
0 < x < Lf4dand 3L/4 < x < L respectively. Then the momentum of the
atoms can be determined with an accumacy that is restricted by the uncertainty
principle, The possible values of the energy are given by

_ hErig

ML

from which we deduce thar possible values of the momentum ate
. fiwn

L

Measutements of the momenta of atoms are restricred by the uncertainty
refation

{8-61)

n

nh wh

Afy ~ -E; —~ _Z (8-62)
and hence their energies can only be determined with an accuracy
AP Atwn®
AE=~ o ~ (8-63)
This, however, is lazger than
b b BT 066
ML

To fact, for atoms separated by 1 meter, say, moving with velocity 10° cm/sec
# ~ 10U, so that there is no possibility that in a mactoscopic situation there
will be conflice with classical intuition. In effect, if the two atoms are labeled 4
and B, the question is whether there is a diffecence between using the wave
_fumtion W4 (Jl’l) ﬂ!s(xs:l and I

[alxn} galxs) — Palxa) i}l
e .
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o describe the two electron state, We shall see in our discussion of molecules
that the ovetlap between wave functions falls off exponentially with the distance
between the (wo atoms. When the atoms are far apart, it does not make any dif.
ference which wave function we use, When the atoms are close, 25 in a H,
molecule, for example, the value of # is of order 1, the wave functions do overlap
and it does make a difference whether one uses the uncorrelated wave functions
of the antisymmetrized wave functions. Experiment tells us that it is the Jatter
that shouid be used,
_ An intetesting consequence of the Pauli exctusion principle is chat the
ground state for N electrons in a potential is very differenc from the ground
- state for N bosons or N distinguishable particles. Consider, for example, the
infinite potential box,

Vix) = e x <0
=0 0<x<h

The solution of the Schridinger equation that vanishes at x = 0 and x = &is
given by

un(x) = sin wex/d (8-66)
withw=1,23 ..., and the energy eigenvalues are
Aaan®
Sl (8-67)

For N noninteracting boséns, the ground state has all the particles in the n = 1
state, and thus che energy is given by

it
E=N-— 8-68
N 2mbt ( )
sa that the encegy per particle is
E At
T = {8
N 2mb? o &)
For N noninteracting fermions the situation is quire different. Only two elec-
trons can go into each of the smtes v = 1, 2, 3, . . . | so that N/2 states are
filled. Thus the total ener@y is given by
ey
& Rrptyt 2 N#
B= R e . (8-70)

i omE gl 4

In obtaining the lase result we have assumed that N is large, 50 that it does ot
matter whether the last level is filled with one of two electrons, and we have used

Niz Nis 1N
2 ny ‘dpe~ =) —
E” fl ? 3( )

2



152 Quancum Physics

Thus the energy per particle

E filar?
—=——N¢ 8-71
N 2dmb &-71)
grows with N°. Equivalently, for a given energy, the number of bosons filling
the well is proportional to E, while the number of fermions filling the well is
proportional to EY2. The highest level to be filled in the fermion case is the one
for which # = N/2, and its energy is

RN
Bmb?

Er =

(8-72)

The subscipt F has been put in because this energy is called the Permi energy.
We may write it in cerms of the density of fermions, which in the one-dimensional
problem is N/b = p, as
fita® .
Ep=——p (8-73)
B

We shall teturn to the significance of these remarks in Chaprer 9,

The exclision principle plays an extremely impaoreant role in the structare
of atoms, The enormous richness in the veriety of chemical properties of the
various elements is directly traceable to the face that only a limited number of
clectrons can oOCUpY 4 given energy eigenstace,

Problems

1. Whar is the reduced mass of an electron-proton system? How does
differ from the teduced mass of an electron-deuteron system? What is the
reduced mass of 2 system of two identical particles?

2. Prove that the exchange operator Py; is hermitian.

3. Consider two noninteracting electrons in an infinite potential well.
Whar is the gtound sere wave function if the two electrans are in the same spin
state?

4, Consider two clectrons in the same spin state, interacting with a
potentiil

Pl x— x|} = —VF |1 — x| €&
= 0 clsewhere

What is the lowest energy of the two-electron seate, assuming that the total
momentum of the two electrons is zero?
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[Hin. Separate the equation in a manner leading to (8-37) and then apply the
Pauli principle.] .

5. Consider two idenrica] parricles, each of spin © interacting wich po-
tential energy ’

Vlacres) = Kl(ws — x) — (2 + x}]

where x; and —x; are the equilibrium positions of the particles.

What is the specrram of the two-pazticle systemn? What is the spectrum of
the system when the identical particles have spin 1/2?

6. Consider two identical particles described by the energy operaror

H = H(px1) + Hipo,x)

where
PS

B(px) = T 4 jmare

Separate out the center of mass motion, and obtain the energy spectrum for this
system. Show that ir agfees with chat obrained by solving
_ Hy{xxs) = Bp(x,xs)
with _
Ylxnx) = slxy) ualos)
Discuss the degeneracy of the energy spectrum.

References

See any of the references listed 2t the end of Chapter 6 and also

D. 8. Saxon, Elementary Quantum Mechaniz, Holden-Day, Iac., 1968,
D. Park, Intreduction to the Quantum Theory, McGraw-Hill Co., 1964.






chapter 9

The Schrodinger Equation in
Three Dimensions

The Hamiltonian for a single particleé moving in three-dimensional space
reads

1

2 2 2 }
H — P: + 2; + P.e + V(x,y,z] (9-1)
which we write in the fm;m
o= 4y 5-2)
2m

The theee-dimensional momentum p has the representation

[
= ¥ {9-3)

Fot two particles in three dimensio;n;, the general form of the Hamilton#an is

)

2m

. 2
H=2 0 P ey (9-4)
2”32 .

If the porentizl depends on the separation berween the particies alone, that is, if
' Virne) = V(e — raf) o _ ©-5)

then the Hamiltonian is invarienc under the displacement of the whele system,

‘o +a -+ d, and, as we aw in Chapter 8, this implies the con-
sezvation of the total momentum and & separation of vatizbles, In what follows
we will achieve the separation by finding funcrions that are simultaneous eigen-
functions of the commuting opetators H and P = p, + p,. The momentum
eigenvalue equarjon reads

P,/ (i‘l,rs) = P fir,rs) Y (96}
o 15%
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that is,
% (@1 + Vo) fimrs) = P flrsr) (9-7
If we write o
f{l"l,l'g) = ﬂl’hlh—'u rs, & + 61'2) ) E?'a)

then with R = ar + Brs, (5-7) reads f"-"(ffah <o N ”,.{“f B ,)

(a4 B VeR) = PUTR) . foo)

that is, the vatiable ¥ = F — Ty is 2 constant parameter a5 far a5 this equation is
concerned. ‘Thus the solution of this equation is

W R) = u(p) ¢ R (5-10)
We wil_]__ now. choose o and @ 10 simplify the energy eigenvalue equation, which
!5 e e e o i ————
- i & ' PR+
- 2:!'91’ - 2—”:‘71’ + V) — Euou | #(r) & =ao {911)
1

Since
¥, =V, + aVg

V.= —V,+ 8% 9-12)
this equation takes the form
B  Zda a'P?
~am[rr s e~
oz —28 _p. __Fr
_ v [v,i w(T} Y P9, «(x) Yy n(r)}
~ 4 Fr]) s(e) = B w(x) (9-13)

after the exponential factor has been divided out, following the differentiation
with respect to R. This equation simplifies if the cross terms are eliminated with
the choice

a = Y
B = ym: (9-14)

It chen reads

LA _ __r |
- w(x) + V(|z]) «lr) = (Em PYS m,]) w(r) .(5-13)

-
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whete we have introduced the reduced mass u by

1
Se— gt (9-16)

B om 2]
This is really a one-patticle Schrodinger equation with energy
P2
Fior = 20m + my)

Thus the energy that enters into the effective one-particle equation is the total
energy, less the kinetic enecgy of the two-parricle system, whose center of mass
moves with momentum P and whose totel mass is m; + m,.

The quantity + is not specified by the abave equation. If, however, we
require that the variable R be canonically conjugate to the toml momentum P,
thar is, if we tequire that :

{9-17)

[PnRs] = i (9‘181

H

and so om, then we see thae

h o /]
[#12 + poc, cxy + Bxy) = r (e +8) = i (9-19)
implies chat
atf=1 {9-20)
that is, '
1
¥ = ——— (9-21)

The reason for carrying our what is after all a very simple sepatation of variables
in this seemingly complicated way is that this procedure will sexve g3 an example
of how to proceed in the furcher separations of the one-particle Schridinger
equation. Such a separation is possible when the potential depends on the
separation between the particles, |¥| alone. With || = 1, the Hamiltonian

=24 (9-22)
2

is invariant under rotations:; ¥{¥) is certainly a Function of the distance from the
origin alon¢ and does not depend on the angular vagiables that locate the direc-
ticn of the vector r; p? is also a sealar quanticy, the length of the vector p, and
thus independent of the otientation of p. Equivaleaty p* = —A®W? is invariant
uader rotations. The sceptical reader can check this explicitly by considering the
special case of a rotation through sn angle 8 abour the z.axis: with
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x' = xcosd = ysind

y =xsin@+ ycosd (9-23)
it i5 tasy to see that .

Pom (e ST A (P =

and

D \® AL Fe) . a\? . Fo) > \z
(&) + (a,) = (Cosﬂ—a—x‘ - smﬁg) + (Smﬂ—g; —+ cos 93)
C faN fay
-(2) () .
\ Since the Hamiltonizn has an invarisnce property, we expect a consetvation
law, as we saw in the case of parity and invariance under displacements. To

identify the operators that commute with- H, let us considet an infinitesimal
roration about the z-axis, Keeping tetms of arder & only so that

xt=x— 8
y=7+bx (5-24)
we require that
Huulx — 6y, y + Ox, 2) = Bug(x — 8,y + 8x. z) {9-25)

1f we expand this t firsc order in @ and subtract from i

Hug(,,2) = Eus(x,2) (9-26)
we obtain

o D Po] a
H (x a — ¥ E) uglyz) = E (x a —y Ex‘) #p(xyz)  (9-27)
Since the right side of this may be written as

o
(2 2) i

¥
and since the #g(r) form a complete set, we find that with
1 o o
z -_— - e — = —_ r3 28
L ; (x » ¥ bx) Xpy — 3P (9-28)

the commutation relation

[HL] =20 ' (9-29)
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bolds. L, is the z-component of the opetator
L=rXp (9-30)

which is the angular momentum. Had we raken rocations about the x- and 7-axes,
we would have found, in addition, that

[Hs I‘-‘} = 0

[H,L]=0 {9-31)
Thus the three components of the angular momentum Opefators conurute with
the Hamiltonian, thart is, the angular momentum is 2 constant of the modion,
This parallels the clussical result that ceneral forces imply conservation of the
angular momentum. ’

We might be tempted ro look for simultaneous eigenfunctions of H, L.,

Ly, and L., but these do not form a complere set of commuring variables. For
example

(Ley L) = [3ps — 4, 29 — 2p)
= [pes 2p=) — (2P 2pa) — [ 2p} + (2P0, %04

= yipozl po + Azpl by
%
= v;._ (JP: - xPU’)
. =HL, (9-32}
Similarly
{Lm Lx] = il
[L., L;] = kL, (o-33)

Thus only one component of L may be chosen with H to form the comm uting
set of observables, We can do a lifrle better, however, since (9-32) and (9-33)
imply chat L? commutes with all three componeats of L

Lo U = [L,, L + L? + LY = [L;, LA + [L., LA
= Lo[Ly, L] + {Lsy L] Lo+ Ly[L,, L] + [L., L] L,
= BL.Ly + #l,L, — ifl,L, — HL.L,
=0 R CE ]

and so on. We thus choose as our complete set of commuting observables the

opetators H, L. (a purely conventional choice) and L. We could also have

included pariry, since the Hamiltonian is manifestly invariant under x — —X,

« y—+ —yand r — —z, but, as we shall see later, specification of L? determines
the parity. -
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lo Chapter 10 we will determine the eigenvalues and eigenfunctions of L,
and L?; hete we merely note that their use greatly simplifies che solution of the
Schrodinger equation, This follows from a relation detived below.

L= (e X p)? = {(r X Pt 4+ [0 X phl? + [(r X ph?

e 2-r2)(2-3)

fi o o a
= — 52| g2 — s 2 4 =
i [" (aﬁ tan )t (bz‘ + Bx’)
b? aﬂ ' aﬂ
a2 - —— —
t# (bx’ + ay) Y oy~ 2 o0z
e X 22 3]
D20 a Ty T {9-35)
as a lirrle algebra shows. Similarly
e} o a s}
| 1] R —_— — - _—
c-p) ﬁ(xa —i—yay-kzbz)(xax-l—ya-l— az)
aﬂ aﬂ aﬁ a? a‘i
— —F2 > S 2 — i —_—
E (x ot + ¥y ay=+"az=+maxay+2"za,az
o2 1] o] ta]
+2""amax+”ax+’a,+zaz) | (9-36)
The sum of the rwo yiclds
o2 o* o : [v] D o
. 5 T ——— H - —_ —
R +”’+z’)(ax= Tyt bz=)+ﬁ ("ax trg e az)

9-37)
We therefore get the identity
i 4 (r-p) = #°pt + Fhe-p {9-38)
Since we ate dealing with operators, keeping track of the order of the wrms is
qucial, It follows from che idencity that
1
= [L’ + (g — fﬁI'P]

e
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-

rosin & sig g

LY

Fig. 9-1. The definition of the spherical coordinates used in the texr and the
telation between the carcesian coordinares {x.z} and the sphetical coordinaces
(ro.8). -

1 1 z I o
S PR SN L SRR i
r’-L R " (r Dr,) & r or (9-39)

Thus the Schridinger equation takes the foom

[ [} 0 1 1.,
- [_r‘ (jr u—ar) (r —ar) T Prord :I g(r)
+ V(r) ue(r) = Bup(r) (9-40)

If we work in spherical coordinates (Fig. $-1), which is the nerural thing o do,
then the only opetator that involves the spherical angles 6 and ¢ is L. If we
therefote pick eigenfunctions of the form

up(r} = Yi(0,8) Rerl) - {941)

where <
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' L2Y1(84) = MY2(0.6) ' 0-42)

is the eigenvalue equation for L?, then the equation sepatates i0to {9-42)and a
purely radial equation. Oue ptocedure is teally no different than the conven-
tiona! sepasation of variables. It does, however, stress the tole of the symmetry
in determining the complete commuting set of operators, and with this help the
separation can be effecced.

We have copcedtrated on the reduction of the three-dimepsional energy
eigenvalue equation in spherical coordinates, since central potentials, for which
¥ = V(r), ate by far the most interesting ones. One other situation that is of
interest to us is the case when the potential is of the form

Vixge) = Fibd + Vel + Vs(e)
The equation

d ( hE o2 ot

+

2 T 2 T o ) wplxy,2) + W) + Vas) + V(@) welxy,2)

= Eﬂg(x,}ﬂ} (9‘43}

T 2w

is easily seen to be solved by
#g(33,2) = #.(0) vy} Weel2) {9-44)

where the functions on the tight ate solutions of

- % % + V.[x)- #e(¥) = et (%)
B & -
= 2 g TV ) = el
— ﬁﬂ ds —| h
|~ 5 g TR vl = evl) (5-45)
and
E=e+1 e+ g

A particuladly interesting example is the three-dimensional generalization
of the potential hole wich infinite walls. If the three-dimensicnal box is cubiral
in shape, with side L, then

Fifx) = @ x <0
=0 nC <L
=m L<x (9-46)

and so on. Thus, aside from a normalizing facmr, the general solution is
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Hamy Hywz

ze(x9,2) = sin m%x sin A sin L {9-47)
and
]
(m® 4+ e + (9-489)

- 2mlt

Note thac thete is quite a lot of degenctacy in the problem: thete ate as many
solutions for a given E as there are sets of integers |#y,my,n,} that satisfy (9-48),
The degencsacy is usually associated with the existence of mutually commuting
opetators, and this example is no exception. Here these opetators are Hy, H,,
and H,, defined by

Ho=22 4 iy
2m -

2
Hy = % + Vily) (9-49)
2
e
2m
s0 that - .
. He+ Hy+ H. = H (9-50)

It 15 intesesting to ask for the ground state energy of N noninteracting
identical fermions, for example, elecwrons, in the box of volume L*. For each
tripler of incegers, (1,1,1}, (2,1,1), (1,2,1), . . ., two electrons cin be accom-
modated. It is easier ¢o ask the quesion in a different way: How maay triplets of
integers {ni,m5,m} are there such that E given by (9-48) is less than the Fermi
energy Er? Each triplet forms a lartice point in 2 three-dimensional space, and if
thete are very many of them, then it is a vety good approximation to say that
they must lie inside 2 sphete of radius R given according to (9-48) by '

»

- 2mE
81’-+#23+u,’=R’=£"—F

Fitn?

and their number is given by the volume of the octzat of the sphere for which

all che #, are positive. Thus the aumber of tattice points is :
1 14:(2#@&9 AL
g 3 8 3 \ fint

L (9-51)

(9-52)

and hence the mumber of electrons with energy less than the Fermi enctgy Ep is

twice that, that s,
: 2mEp\ 32
- [} N
N 3 ( ftyt ) ® 33)
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The number of ¢lectrons is proportional to the volume of the box L2, which is
10 be expecied. In terms of the density of electrons,
N

n = E {o-54)

Ep = P (_33)’” ©-55)

we have

L)

To calculate the total energy, the number of lattice points may be writzen as

—1f P (9-36)
8 nigr

The factor 1/8 comes from our restriction to positive integers in (9-48); in the
above integration this restricrion is removed and must be compensated for by
the factor in front. At each latrice point the energy is given by

hx?

=1 n? 957}

s0 thac the total energy is

:
Etnt='ﬁi"lj‘ nf #n
2L fni<R

B8

Bt 1 R

= -—<41f nt dn
2ml® B [

= 2omi: ¥ (9-58)

Since R is eelated to the number of electrons by

1 4 .
N=2.-.—FR (9-59)
g 3
we finally gec )
raﬁz 3N‘ 5'r
a=——l— -60
Era J0mL? ( - ) {9-60)
If we write this in terms of 2 = N/L? we get
iRt 3.&)"‘"3
=—|=) L 9.61
B = L0 (2 (5-61)

The fact that the ground state of a many-electron system in a potential
consists of a large number of filled Jevels has many ramifications. Typical values
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of Eg ate of the order of 5-10 V. Thus, at ordinary tempetatures very few elec-
trons can be chermally excited; most of them could only be excited to states that
ate already occupied. The implication of this is that for & metal, which is quite
well described as 2 crystal lattice of ions with one or twa free electrons per atom,
only the ions contribute to the specific heat. If an electric field is applied to the
meral, only the electrons near the top of the “Fermi sea” caa be acceletated,
since-those that lie deeper cannor find available energy states. Those that are
accelerated have long mean free paths. Collisons with ions that would reduce
theit enecgies below Ep are inhibited because thete are no available €mpty states,
These matters are discussed more fully in books on solid state physics,

Ptoblcms

1. Consider a paricle moving in = ylindrically symmetric porential
V(s), whete o* = x* 4+ 3*. Whar is the complete set of commuting observables
that you would use to specify the state of the system?

2. Use your conclusions from Problem 1 to separate the Schridinger
equation in cylindrical coordinates.

3. Given that the numbet density of free dectrons in copper is 85 X 10%
cm~4 calculate {1) the Fermi enerpy in electron volts; {2) the velocity of an
clectron maving wich kinetic energy equal to the Fermi caergy.

4. A nucleus consises of N neuitons and Z protons, with N + Z = A,
If the radius of che nucleus is given by R = roA™, with ry = 1.1 fm (1 fm =
109 em}, and if the neutron and ptoton masses are both very neardy 1.6 X 1072¢
8m, write expressions for the Fermi energy of the proton “'gas” and the neutron
"gas,” assuming that the protons and the neuttons move frecly. What are the
Fermi energies if N = 126 and Z = B2?

5. Consider a neutron gas in its ground state, with mass density p varying
from 10" t0 10" gm cm~. Calculate the Fermi energy as 2 function of p. Note
that at some poiat the neuron Bas becomes relativiscic, that is, the relation
between energy and momentum is relacivistic. In what range of densities should
one begin to use the relativistic formula?

6. The mean ¢lcctron energy in u degenerate electron gas is given by
1
8 2m,

1
.—fd‘n
g

(E) =
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for nonrelativistic electrons, and

3 f Pol(pe + m iyt - m )

(E)
-}fdan
B

more generally. Calculate the general expression for the mean energy ss a func-
tion of & = pp/m.. Use this to calculate the pressure, defined by the thermo-
dypamic formula

_ &
o1 /#)

in the nonrelztivistic formula and in the ultrarelativistic domain, where £33 1.

P:
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For a good discussion of angular momentum in the context used here, se
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This hook, as well as every introductory book, wotks out the separation of the
three-dimensional Schrédinger equation,
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cbapter 10

An gulaf Momentum

Qur task in this chapter is to find the eigenvalues and the eigenfuncrions
of the operators L and L2, Siace the angular momentum has the dimensions of
k, we may write the eigenvalue equations in the form

I‘IYI‘J‘ = mﬁrylm

LY. = IU'I‘ 1} Ry, (10-1}
where iz and X/ + 1) are teal numbers. The peculiar way of writing the eigen-
value of L2 will prove its convenience later, There are scveral ways of proceeding,

The conventional way is to write out the opetators L in spherical coordinates.
We have

x=rsinfcos g

¥ = rsin#sin ¢

= ygosh (10-2)
50 that
dx}-—z sirf&cos@a’r;i— rcos 8 cos ¢ o — rsin @ sin & AP
dy =sinBsingdr + rcos@sing B + rsin & cos ¢ dé
dz=_cosﬂdr— r sin 0 40 {10.3)
These can be solved to give '

dr = sin @ cos ¢ dx + sin 8 5in ¢ @y + cos 0 dz

= 1 (cos&cos¢dx+cosﬁsin¢dy— sin & &)
r

J¢=rﬁ16(_sm¢dx%c“¢..dﬂ (10-4)

167



168 Quantum Physics

With the help of this equation we can obesin

8 o 2 o> %D
Tox bxbr+axbﬂ+axb¢

et  coshoosg D o2 ,
=smn cosdubr r cos m‘*a& rsin f O f
2 cosp D !
7} = sin § sin ¢ —+ cosﬂs:n¢~ OB +rsin0 %
Q by sind Q
. 10-5
Tz 83:‘ r DO ( )

and dius we finally obrain

fi o o k0
= |x—=——y—]=—— 10-6
L= (" 2 7 ax) 7 % (10-6)
The other two components of the angular momentum are mote compactly
expressed, if we introduce

Ly=L. +il, {10-7)
Then .
il @ 2 f o
.[*=-‘—|:)a—-—za*:|::(zax il
3 4] a9 ]
=':—[=l:az(a—:|:ra-)=u=:(x:t:_13;]
. e} 1 D ief® D
=:l:ﬁrcosﬂ(smﬁ'sﬂ“g-i—-:cosaect“-a:tma)
o sind o
=ﬁrsm6ei“(cosﬂg—75) (10-8)
that is, '
L&-:ﬁei"“’(:i:—-a—-!-icotﬂ—a") (10-9}
o opf

One can then construct the L operator by observing that

L. = (Lo + i) (Le — iLy)
= L2+ Lt — AL, L] {10-10}
s0 that .
L= L2+ LL_+ L, L]
=LJd_+ L2 4%, (10-11}
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In the last line we used (9-32). We thus ger a second order differeqcial operator
involving @ and ¢, and there remains the task of solving the differential equations
that (10-1) represent. This is discussed in many textbooks on quantum me-
chanics or classical electrodynamics. We will praceed algebraically but digress
for a moment o discuss the eigenvalue equation '

LYin = miYs. (10-12)

and some applications. The equation, using (10-6), reads

a
5 Yiallg) = imYia(0.6) (10-13)
¥
so that ¢he solution is of the form Y ,.(0,¢) = 0, (6) B..(¢) where
fo(p)
Y = ind,, 10-14
| ph (#) | (10-14)
The solution 1o this, normalized such that
f " dp|Bal? = 1 (10-15)
]
is
1 .
= i -
D) vV (10-16)

It is sometimes argued that since a rotation through 360°, that is, a mansforma-
tion ¢ — ¢ + 2, leaves the system invarigat, it is necessary thar

Prim = 1 {10-17)
s that #2 is an integer. This is not quite correce, since the quantities that enter
nto physiml observables are of the type f - A ™) Aje(d}, with wave func.
tions y(o) of the form 4 ) '

2 e
If we require that these arbitrary wave packets do not change (except for an
overell phase factor) under the transformarion $— ¢ + 2r, then we are led w0
the conclusion that the most genera] allowed values of  are s = £+ integer
whete ¢ is 4 constant. It is only if we view the operator I, as part of the rotal set
{LLy,L.) that we can say something about the constant £. We shall argue below
that the eigenvalues are distribured symmetrically aboue zero, so that ¢ = 0 or
. £ =-1/2, and for the pperators considered in this chaprer, we shall resmict our-
selves to ¢ = {, thar is, the condicion that m i Fnteger,

(10-18)
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The eigenvalue equation for L, appears in 2nother context. Consider a
classical totatot, romting in the x-y plane. If the moment of inertis és I, then the
eneigy is : :

L}
= — . 10-1
B 2l (10-19)
and thus the Hamiltonian is
Lt
H="% {10-20)

=— {10-21)

and the eigenfunctions are ¢+, There is & degeneracy, since H commures with
L., and thestwo eigenfuncrions for a given En comrespond to the two senses of
totation. If we have N parricles rigidly fixed on a circle, with equal angles 2x/N
between ceighboting particles, and if fhe parsicles are idemtical, then the solution
of the energy eigenvalue equation

g(¢) = Epld) {10-22)

will again be #£%9, The physical system is unaltered uader a rotation of 2¢/N
radians {or an integra) multiple of the angle), and the solutions should refiect this.
The same kind of argaments that forced = to be an integer now imply that
A = NX (an integer).! The enctgy is therefore

E— fi{(Nm)?
ar

(10-23)

Ler us now teturn to pur equations (10-1), and try to obmm the cigea-
vilues in a manper teminiscent of out treatment of the harmonic oscillator ia
Chapter 7. The cigenfunctions of the hemmitian operators L and L? will be
orthogoaal, if the eigenvalues are different, and wich proper normalization, we
will write '

{Yyw|Yin} = Sipbagor (10-24)
Since : i
(Vi (L3 + L2+ L) Vi) .

= {LoYilla¥im) + (LyYim| Ly Vin) + w2

>0 ' (10-25)

1 The reader might look batk fo the Dicke-Wittke Gedankenexperiment discussed in
Chapter 1. . . .
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it follows that
K410 {10-26)
The openators Ly introduced in (10-7) ate very useful in what follows, and

we shall see thar they play the role of mising and loweting operators. First, we al-
ready saw that

V=L, + LF- %L, (10-27)
In the same way we see that
=L L+ L2+ i, {10-28)

It follows from the above, as well as direcdy from (9-32) thar
[Ly, L] = 28I, (10-29)
The remaining commutation relations are

(Ly L) = Lo+ fLy, L) = —ikil, — KL,

= —&L, {10-30)
_ and
[l L} =#L_ {10-31)
From the fact thar [L2 L] = 0, it also follows that
L4 L =0
2 L]=o0 {10-32)

This implies that
Ly Yim = LLiVie = JI + 1) R2L,Y ... {10-33)

thar 15, L, Y, are also eigenfunctions of L? with che eigenvalue characterized
by /. On the other hand, :

Ll Yol = (Lol + L) Vi
mﬁL—{-Ylm + ﬁL‘+Ylm
Am+1) L. Y, (10-34)

so that L; ¥, is alse an eigenfunction of L, but with m-value increased by
unity. Similarly we can show thar :

L Yim=%(m ~ 1)L Yin (10-3%)

so that L_Y",. is an eigenfunction of L, with m-value lowered by umty Thus we
call L. raising and joweting operators, respectively. We may write

C LyYim = Glim) Yioms, {10-36)
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It follows from the hetrniticity of L; and L, that
Lif=.xil)' = l. =il, = Ly (10-37)

Hence, a consequence of

{LpYim|LaYim) 2 0 -(10-38)
is that
{Yea|L3LsYim) 2 0 (10-39}
and therefore (10-27) and (10-28) imply that
' (Vin|F — LI £ ALY Yi) 2 0 (10-40)
thar is,

W+ 1)2m+m
N+ 2w —m {10-41)
Since J{f + 1} > 0, we can take / > 0 without loss of generaliey.? Then (10-41}
shows that .
- —l<m<l (10-42}
If thete is 8 minimum value of m{= m_) then for the conesponding
eigenseate

_ LYtm.=0 (10-43)
We may chen calculare m_ by using (10-27) and applying it to Yi,.: we get
K+ 1R =n b — o i® (10-44)
Similarly, if thece is 2 maximum vaiue of m{ =#1,} then
LY, = 0 (10-45)
and an application of (10-29) to the maximum eigenseate gives
W4 )R = mR + miit (10-46)
Hence
wm_ = —}
my = 41 (10-47)

Since the maximum value is to be rezched from the minimum value by unit
steps (repeated application of L,), we find (Fig. 10.1) (2} that there are 2l 4 1)
states, that is, 2/ + 1 is an integer, and (b) that # can ke on the values

wm=—] 141, =042, .. .11
The possibility that / is half-odd integral, that is, / = 1/2, 3/2, ... will be dis-

F

2 If we were to find chat § €& — 1, we would metely define L = — / — 1, and replace
the old J, with the new, pusitive L. N'othing would change, since L{L 4 1] = &/ 4 1).
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T-—1a

- o~ 2N

- -2k

- -1k

Fig. 10-1. Speccrum of the operator L,
for = given valuc of /.

cussed in Chapeer 14 where we discoss spin. In this chapter we restrice outselves
ta insegral vaiues of {.
We may also calculate the coeflicients Co{f#) defined in (10-36). We have

Jci(;rm” 3{Yl,!u!:‘.ll Yi‘m;[-,l} = cL&YM'L*Yr.}
(Yia| LzLyYin)
= (Yin| (@} — L = £L,) Y1)
=B+ 1) — mim + )]
s0 that, with 2 convenient choice of phase, we get
Cellm) = Bl + 1) — mlm = 1)]u2 {10-48)

This is as far as operator methods can take us. We shall aow use the explicit form
of the operators L, and L, to obtain convenient expressions for the eigenfunc.
tions in terms of the spherical angles 8 and ¢. This development will patallel
thac of Eq. (7-31) to (7-35). We write, as already sugpested

_ Yiu(0.4) = Oinl6) ™ . (10-49)
The condition (10-45) reads

&t eto (033 + icot ﬂ%) eu(ﬂ) t‘b

. 9
v = § F¥He (E; — leot 0) Bu(f) = 0 (teso)
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The solution to this equation is easily found o he _
Oul®) = (sin 6)} (10-51)

The appropriate multiplicative constant will be obtained later from the normali-
zation condition, An arbicary state is obtained by the loweting procedure

Yi.8) = CLY ™™ (5in ) &% (10-52)

Consider first

. o ay . .
L Yy@4) = fie't (— o + icotd a) {sin 83 ¢

s a
S A (— o /ot 8) (sins )}

Since ohe can show that for an atbivary function f16)

1

(E + ! cor ﬂ) fe = g)t e [(5111 )41 8):| {10-53)

we have obtained

FU-De
Y = m ( 4 ) [(sin 0)*(5in )] {10-54)

The next step is the same, except thar / is replaced by £ — 1 and the operation in
{10-53} acts on the form obtained in (10-54). Thus

. it -2 :
Yia=C" (.:1’:1 = (-’ _d') I:(Sm #)-? (sml 3 (_ %) (sin & “]

a0
' i =1ié d 3 4
= C"'(—1)* (:in = 2 I:m B {sin 3)”] {10-55)

In terms of the vadable » = cos 8, — 1/(sin #) {d/®) = dfdw, and {10-54),
(10-55}, respectively, read

r{f 1
s BN P ORY.
Yira = (sin )1 da (@ — #)Y
Ef(l )" &
Yiea=C" W ) [(1 — =8 _ (10-56}

The general form is

efmd 4 I-m N
Y = C o~ (;) 1 — a2 - {10-57)
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The eigenfunctions are to be normalized. Since we are dealing with
spherical angles whose range of integration is 0 X ¢ < 2x, 0 <0 < ¢ (sec
Fig. 9.1) and where the integral over the surface of the sphere (r = constant) is

r r
]dﬁr—] d:;bf sin £ ot
n i}
We must impose

NI 1 4\ :
(Yim| Yim) = 1 =fu e . dx|r|i[—f{l e (};) (1 - k?)‘:|
(10-58)

The infegration is tedious. We content ourselves with writing down the appro-
priately normalized Yo (6,¢) with the phases chac are conventionally estzblished-
2410~ m)

dr (/4 a2

Yia(0) = (—1)™ [ :’m P™{cos 8) #m*  (10-59)

with .
Yiom = (~1)" Yy (10-60)
The associated Legendre palynomials are given by

I+ m)l (1= atymit 4\
Prm(u) = (—1) " EIJ_F :;T ( 2‘1!) - (E) (1 — ) (1061)
with the vatue for negative = obrained from

(¢ — m)
Gt m

It will be enough, fer our purposes, to list a few of the eigenfunctions:

Pg_"'(“) = {— 1)’"

Pr(u) {10-62) '

1

Yoo = o
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3
Yz__o = \/-IFT (3 cos? @ — 1) {10-63)

With the knowledge that L?, acting on an eigenfunction, as in (940}, is o
be replaced by ! + 1) #2, we can now write the radial differential equation that
determines the energy cigenvalues and eigenfunctions. The equation, which
we will discuss in great detail for a variety of potentials, is

L 4 d 1 4 +1)
' + V{r) Rewm(r) = ERpm(r) (10-64)

We note that there is no dependence on # in the equacion. Thus, fora given /,
there will always be a (2/ + 1)-fold degeneracy, since all the possible m-values
will have the same encrgy.

Problems

1. A molecule consists of twe identical atoms, each of which, in its
ground state, has spin 0. The molecule has, among irs possible excirations,
rotational excitations. If only rotations abour the z-axis are considered, so that
H = E.2/2] and the separation berween the atoms is considered fixed, what is
the rottionzl spectrum? If the atoms have spin 1/2 and they are both in the
same spin state, what is the specoum?

2. Express the spherical harmonics listed in (10-63) in terms of x =
rsinfeosd, ¥y = rsinfsing, andz = rcosh,

3. The Legendre polynomials P{x) = P,%4) can be defined in terms of
the expression {10-61). Use this definition to show that Py(x) satisfies the equa-
ton

(1 — ) Py(6) — 26P/(6) + KU + 1) Prla) = 0
4. Show that the Legendte polynomials Pz} satisfy the recurrence
relatiops '
P, = ulP (1 — ) Py
G+ 0Py =0+ 1)aP— (1 — ) F
U+ )Py — (2 ) aPi ¥ Py =D
5. Use (10-81) to show that

ﬁ ?Pw) = (1 — 2ux + 52 z <1

1=l
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6. Use the procedure outlined In this chapter to discuss rotations in four
dimensions. The generalization of L is now the ser of operators that may be
. Wwritten ag .
Lis = —i(xd5 — x D)
(., = 1,2,3,4). Inttoduce

(i Ja s} = (LagLagLys)

and

(K, Ke,Ks) = (Lus,Lag, L)
(a) Find the commutation relations of alf six opetators among themselves.
(b) Show thar the operators '

AP =U+Ks ) = J-K)

each obey zngular momentum commutation relations and that they commuce
with each other. Use the final fesukt 1o derermine the maxma) set of muzually
commuting observables, and thus the quantum numbess that would be used to
label an eigenfunction,

7. Consider an electron in an arbitracy potential F{r) and a state of
angular momentum /. Show that the probability of finding it at the point r is
only & funcrion of {r|.

“[Hizt. Note that the solutions for the (27 + 1) m-values are degenente, and
that if no spedial alignment is prepared, all m-values are equally probable, Use
the formula '

2 | Yilb9)|® =

=1

2141

8. A particle in = spherically symmetric potential is in a state described by
the wave packet

Vixya) = oy + gz + 2 ="
Whet is the probability that a measarement of the square of the angulat mo-

mentum yields 07 What is the probability that it yields &2 If the value of / is
found to be 2, what ate the relative probabilities for s =2,1,0,—1,—27

9. Consider the following model of » petfectly smooth cytinder, It is a
ting of equally spaced, identical particles, with mass M/N 50 that the mass
‘the fing is M and its moment of inertia is MR?, with R the radius of the ting.
Calculate the possible values of the angulac momentum. Calculace the energy
eigenvalues. What is the energy difference between che ground state of zero
angular momentum, and the first rotational state? Show that this approaches
infinity as N — e, Contrast this with che compatible enetgy for a “nicked”
. cylinder, which lacks the symmeery under the roration through 2%/MN radians.
This example implies that it is impaossible to ser g petfectdy smooth cylinder in
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rotation, which is consistent with the fact that for a perfectly smooth cylinder
such a rotation would be unobservable. )

10. Express L? in texms of O/3# and 3/0¢. Write down the differential
equation obeyed by O defined in Eq. 10-49.
{Hint. Use the variable z = cos 8). Show that (sin 8)" is the solution of the equa-
ton for [ = m.
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chapter 11

The Radial Equation

'The radial Schrddinger equation {10-64) may be written as

(f +2 i) Run(r) = [Vt_r} + M] e
. . 2ur

2uE

+ T Runity =0 {11-1)
where we have replaced the label & by = in the subscripts of the eigenfuncrion
Ratn(r). We will examine the solutions to this equation for'a variety of po-
tentials restricted by the condition that they go o zero at infinity faster chan
. 1fr, ‘except for the important special case of the Coulamb potential, We will
alsc assume that the potentials are not as singutar as 1//2 at the otigin, so that
- Lim #¥(r) = 0 (11-2)

=0 .

It is sometimes convenieat to intraduce the function

#aim(r) = Rusulp) (11-3)
Since
' £ 2 e _ L& -
(dr' + r dr) r o “nin(r) (““-i)

it follows that

t i
i%s{_') i % [3 - V) - i_:;_rl!)_ﬁ’] tnin{r) = 0 - )

This looks very much like a one-dimensional ¢quation, eicept that
(a) the potential ¥{r} is alrered by the addition of a repulsive centrifugal
barrier, . _ '

K+ 1) &

2t (11-8)

Vi) — Vi) +

179
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Vir) |

Vare (1)

Fig. 11-1. Effective porencial acring in radial equation for = #R(r) when the
rea] potential is a square well,

(b) the definition of #.m(r) and the finiteness of the wave function ar the
origin require that
' im0} = 0 (11-7)

which makes it more like the one-dimensional problem for which V' = = in
the left-hand region (Fig, 11.1).

First we consider the radial equation near the origin, dropping all sub-
scripts for convenience. As r — 0, the leading terms in our equation are

P KA

pr " o ) (11-8}

because the potential does not contribute for small enough » when {(11-2} is
satisfied. If we make the Awsarz

wr) ~ v (11-9)

we find that the equation will be satisfied, provided that _
- -+ 0=0 (1110}
that is, + = [+ 1 ors = —I The soludion that sarisfies the condition #(0) = @,

that is, the solution that behaves Like #H1 is called the regalar solution; the solu-
tion thar behaves like +—¢ is the irregalar solution. :
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For lazge r we can drop the potential terms, and the equation becomes

iy 2uE
o + P H ) . (11-11)

The squate integrability condition implics that

1 =fd‘*'1¢'[l'}|’ =f: r”drfdQIRmE"J Y84}

=f rgdr| Rotmir)- 2 . {11-12)
[1]
that is,
[ |ttt (r) [*=1 (11-13)
*
so that the wave function should vagish at infinity. If E < 0, so that
2uE
I Tih —at (11-14)
the asymptotic solution is
' wlr) ~ &= (11-15)

If E > 0, we have solutions that are only normalizable in a box (see discussion
in Chaprer 4). With

—— = k2 {11-18)

the solution will be a linear combination of #* and e, the'proper combination
being determined by the requiremeqt that the asymptotic solution tie on con-
tinuously to the solution that is regular ac the arigin, We now consider some
examples.

A. The Free Particle

In this example V{r) = 0, but there is still a cemtrifugal barrier piesent,
The radial equation {11-1) takes che form

£ 24 K+ Ry o
[drz - i -]R(r) + £R(r} = 0 (11-17)
If we introduce the varisble ¢ = br, we get

AR 2 AR M+ 1) .
X o e R+R=0D (%1-18)
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This equation can actually be solved in terms of simple functions. The solutions
are known as spherical Bessel fanctions. The regular solution is

H — =g}t L L)i (m_p) . 11-1
e = (—nm (p A ) : (11-19}
and the icregular one is '
FAY
milp) = —(—p)! (i d_) (@) {11-20)
a dp P
The _ﬂ:st few functions are listed helow.,
Jolp) = M|me mip) = — s p
»
. sinp ©0OsSp Cosg sing
]L{P}=_'PT-_T ml(ﬂ)=-P—,——;—*
. 3 1y . 3
flp) = (? - :) sin p — r cos p
1
mylp) = — (p—i - :) oS g — % sin p (11-21)

The combinations that will be of interese for lacge p are the sphevicel Hankel
Jrenctions '

k" (o) = jde) + inlp) (11-22)
and

h? () = [ (@) (11-23)
Agzin the first few spherical Hankel funcdons are

W = =
i

W) = — f; (1 + -'i)

p

. I‘ﬂ - )
wM=1ﬁ+ﬁ~%) (11.24)
o p p
OF special interest are
(2) the behavior near the origin: for p </, it turns oue chac

pl

35 ...+ 1)

fu(p) ~ T (11-25)
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“and
1-3.5-,.. (-1
nufp) > — 133 = ( ) (11.26)
For p 3> J, we have the asymptotic expressions
. L, .
filp} =~ — sin (p - —) {11-27}
] 2
and .
1 Ir
rip) o — —cos|p — — (11-28)
Il 2
50 that '
BV (p) =~ — 2 jto—tn2) (11-29)
p
The solution that is tegular 2t ¢he origin is
_ Rilr) = jilkr) (11-30)
Its asymptotic form is, using {11-27)
1 —i(Er - 7 e —
Ri(r) o — —- [‘ G —dxf2) it hﬁ)} (11_3])

2ikr

We describe this as 2 sum of an “incoming” and an “outgoing” sphetical wave.
The nomenclature is attived 4t in the following way. The generalization of che
one-dimensions] flux is

§ = 5 ) Vi) — wyn) ¢(z)] {11-32)

14
2du
We shall see that it is only theflux in the adial direction that is of interest for
large r. Thus the radial flux, integeated over all angles, is

A 2 *
fdmr-j(_'} = afffﬂ( * o ¥ %—' ) {11-33)

For a solution of the form

ik
V) = €5 Vi) (11-34)

with

Yil0.0) |2 = 1 (11-35)
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we ger
ﬁ ﬁiﬁf e;kﬂ:“ ectii‘r
RNV K . _ _ .
f a4, Ztuid 1: " (:l: ik . = ) complex con;ugate}
Rk C\% 1
=+ ud Ll — (136
mor

The + signs describe outgoing/incoming flux. The factot 1/+? that emerges
from our calculation is actually necessaty for flox conscrvation, since the fux
going through the sphetical surface at radius » is

f 724, = (independent of 1) (1%-37)
Fot out solution {11-31), the incoming flux 13, aside from 1/77,
Rt | 7 b Rk 1
—_— itz i3 = . 11-38
PP . a8 (11-38)

and this is equal in magnitude to the outgoing Hux. The ner fux is therefore
zero, as it should be, since there are no sources of flux.

In genetal, Jux conservation demands thar any solution—and this includes
solutions for which ¥{r) ¢ 0—whose form for r very large must [by the argy-
ments following (11.15)] be

1 . Fdr -
R]{f) ~ '2;?_[2 (ke —tefD) S:{E} e” hﬂl] {11_39)
requines
|5k =1 (11-40)

as otherwise the outgoing flux would differ from the incoming one. A function
whose absolute square is unity can always be written in the form

5(E) = a® {11-41)
The real function &:(£) is called the phase hiff because the radial funcrion in the
asymprotic region {(11-39) may he rewritten as

Rily) ~ M sin [Ar = IZE + &) (11-42)

Aside from the phase factor in fron, this differs from the free particle solution
f1(kr}), whose asymprotic form is [sin (br — Ir/2))/kr, only by the shift in phase,
Sk,

We note that the fux in the i direction involves

] Af .1 0 . 1 '
B j=— S Y — complex conjugate.] ~ T (...

|
|
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and at large distances, such a flux, when multiplied by the area factor 7249, suill
vanishes as L/r relative 1o the dominant term in the radial fux. This is the
justification for ignoting all but che radial flux at latge distances.

B. The Square Well, Bound Stares

Consider the potendal
Virl= -Vo  r<a
‘ =0 r>a (11-43)
Then the sadial equation has the form

AR E.iR__MR+%‘=‘:_(VO+E)R=O r<a

ar rodr
PR 2 AR M)
&y g t g A=0 T (11-44)

We look for héund state solutions, for which F < 0. We write

2
o Mt B =g

—12—5% E=—o (11-45)

* The solution for r < 4, which must be regular at the otigin, is
' RO = Ajer) (11-46)
The solution for r > 4 must vanish a5 r — @, The second of the equations
(11-44) is just the equation for the spherical Bessel function, except that £ is

replaced by s The solution that behaves like ¢ now becomes the exponenti-
ally falling one, dhat is, we have

R(r) = Bh® (iar) (11-47)

for v > 4. The two solutions must match at r — ¢ and 50 must the derivatives.
This leads to the condition

p MJ = in [‘ﬂ‘- fl}{ﬂlfdp]
[ P11 N - AP i (11-48)

This is a very complicated transcendental equation invo].virlg 4 Vo, and E. For
+ = 0it simplifies greatly if one uses the funcrion #(r} = rR{r). The cigeavalue
is obmined by matching A sio xr and B~ ar ¢ = 4 The derails are left as an
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EL

Vir}

Fig. 11-2Z. 'The shape of the wave function #(r) = rR{r) for an aitractive squate
well when there exists one bound stawe (/ = 0}

exetcise for the reader; the shape of the radial wave function #(r) for che firsc and
second bound states is exhibited in Figs. 11.2 and 11.3,

Let us return 1o Bg. 11-48 for the case of & very deep potential for which
xz 3> i In that case the left side of the equation simplifies, since we are justified
in. using the asymptotic form of fdp). Computation shows thar (11-48) takes
the form

i
— ke (m - 7) — (sight-hand side) (11-49}
) ¥

The cight-hand side does not contain Py, and if | E; < W, the largeness of xz

sin K'r

Fig. 11-3. 'The shape of the wave function #(r) = rR{r) for an attractive square
well when there exist two bound states (/ = 0). Only che wave funcdon for the
second bound stzre is sketched in this figure, '
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implies thar the comngent-must be dose to zeto. Thus we have approximately

w-Z gt (11-50)
Since for | E| << Fy we have
BV
o Ry (1 + Ef;) (11-51)
where
a7
2= B {11-32)
(11-30) reads '
E
LI Uk (5 BT L (11-53)

2Va Ko

Thus the levels that are far from the bottom of the well are approximately equally
spaced, for all / & «os, with the spacing : :

AE x '
o~ — 11-54
Ve xa ( )
A related problem is the infinite box io three dunensmns Here
Vlirl=0 r<a '
. = o (-2 3 {l 1-55)
In this case, writing .
. 24E _
. w o (11-56)
the solution that is regularat r = ¢
’ R(r) = Ajfkn {11-57)

-

with the cigenvalues decetmined by the condmon thac the solution vanish ax
r = a, that is, by

flda) = 0 {11-58)

The roots for a few values of J are listed below.

i=0 1 2 3 4 5

3,14 449 576 6.99 8.18 9.36
6.2B 7.73 910  iD42
O.42 s I
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If the first root for a piven /is labeled # = 1, the second roor » = 2, and so on,
and if we use the accepted spectroscopic notation for the / values,’

§:i=0

P:l=1
D:.i=2 i
F:l1=3 :
G:l=4 :

then the otder in which the levels ocour is _
15; 1P; 1D; 25; 1F; 2P, 16, 2D; 1H; 38, . ..

Suppose we considet 2 model of the nucleus thar consists of protons and

neutrons inside such an infnite box. Since neurrons and protons ate spin § par- -4
ticles, that is, fermions, no more than two neutions and two protans can occupl
a given state. 1f we concentrate on protons, we observe that in the 15 state oply
ftwe protons can appear, In the pexc level we have { = 1, so that there are ‘three
states, and hence six protons will fill it. For the 1D level, with five possible
m-values (since / = 2}, fen protons are cequited to All this “shell.” Thus levels
will be filled when the number of protons is 2,8 (= 2+ 6), 18 (= 2+ 6 4 10},
20 (= 18 + 2}, 34 (= 20 1+ 14), 40, 58, 68, 90, 92, 106, . . . , and similatly for
the neutrons. A study of teal nuclei shows thar for the “magic”” number of
pretons and neutrons, 2, 8, 20, 28, 50, 82, 126, . . . , these nadei exhibir special
charactetistics that can be associated with filled levels, that is, closed shells. The
difference between the real "magic”’ numbets, and those obrined in our primi-
tive model comes about because there is an additional potentiaf that depends on
the spin and that shifts the Jevels about somewhar, thus reordering the numbers.
The shell model of the nucleus, when propetly constructed, explains many of the
propercies of nuclei. What is not obvious is why nuclei should behave like a
collection of particles in a box.

C. The Square Well, Continuum Solutions

With E > 0 we write
iy + (1159}

1 The historical origin of this notation was the description of specrral lines as Sharp,
Principal, Diffuse, . . . , and their subsequent identification. Ir does not make sense, bur it
stuck. The notarion here differs from that used in atomic physics, where the conventional
notation adds the f-value ro the index, so that the order would be weitcen in the form,

15, 2P, 30, 25, 4F, 3P, 5G, 4D, 6H, 35, . . .
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The sclution fot r > « will be & combination of the regular snd irregular solu-
tions of the free field equation :

Ri(r) = Bfi(kr) + Cm(ke) {11-60)
while the solution for r < # must be the regular solution, thar is,
B{r) = Afrlsr) (11-61)
where
24(E+ ¥
ﬁ=ﬂé§ﬁ (11-62)
a5 before.
Th hi f L f‘& r= ives
e matching o PAPALLIES O
dfr(p)/dp:l [Bsgfm + 'cdmfdp]
— =k == 1163
K[ ji(ﬂ) —ra B}‘(P) + Cuip) Pk ( )

from which the ratio €/B can be calculated. This ratio can be related to the phase
shift that eppeared in (11-42). We do this by locking at the 2symptotic (large r)
form of (11-60}

Ryly) ~ -; l:sin (Er - %) - —;: cos (ér - I?'):' (11.64)

which is to be compared with (11-42), tewritten as .

. ! ' LAY
| Rilr) o~ i [sin (ér — —;;) cos &r{k) 4+ cos (kr — T) sin ﬁg(é}]
' We see that the relation

§=mmmm (11.65)
holds.

- The actual computation of /B from (11-63) is tedious, except for [ = 0.
4s for the bound state problem, the use #{r} = yR{r) simplifies the calculatian
greatly. One only needs to match A sin w7 to B sin &r + € cos brat ¢ = ato
cbaain an expression for tan 3. The tesults for chis case are schematically deawn
in Figs. 11.4 and 11.5. They show that an artractive potential tends to *'draw in”
the wave function, while 2 repulsive potential tends to push it our, We will
reruen to these matters in Chapter 24, when we discuss collision theory.

Befote concluding this chapter, we focus on an importane relation thar can
be obwined by solving the free particle equation in two ways. One solution is
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Fig. 11-4. Continuem solution x(r) = rR(r) for atractive potensial (f = 0}.

cbrained as a superposition of our sepamted solutions (11-30) multiplied by the
appropriate spherical harmonic Yia(f.4):

VO = 35 3 Awmilkd) Yld) (1168

=l e

Anorher solution of the free particle equarion, which reads

V't gy =0 (11-67)
before the separation into angular and radiz] parts is made, is the plane wave
W) = &7 (11-68)
e -]
o
' ! ! -
,f’ . h““\ :r i Solution for ¥ = U’II”’-
/s N I -
——\\QI Il /\
AN 4
‘ e / wlr)
Y
'\\-_—_' -

Fig. 11-5. Concinuum solution #(r) = rB{r) for repulsive potential = 0)
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~ We may therefore find Az such that $(r) = ¢*'" in (11-66). Note that the
spherical angles {8,¢} are the coordinates of the vector r telative 1o some zrbi-
trasily chosen r-axis (see Fig. 9.1). If we define the z-axis by the direction of &
(uniil now an arbitrary direction), then

o e}l-rcoss (11-69)

‘Thus the left side of (11-66) has no azimuthal angle, &, dependence, and thus on
the right side only terms with = = 0 can sppear; hence, making use of the
facr that

21 1 14 . .
Yulfe) = ( + ) FPy(cos 8) (11-70)
whete the P; (cos f) arc the Legendte polynomials, we get the relation
3 LI e Y3 1y142
ed'mﬂ = E ( + ) Aajlg(ﬁf) P:(COS 3) (1 1-71)
S\ &
We may use the relation
l/ 1 d(cos &) Prcos &) Pulcos 8) = b (11-72)
2t ! TR ’

which is a direct consequence of the orthonormality relation for the Y. and
{11-70} , to obuin

Ailkr) = 3[4n(2/ + 1)]V2 f _: &Pi(z) & (11-73)

The integrl can be looked up, or worked out by comparing both sides in the
limir that £r — 0. In any case, whar results is che expansion

Jhreoss _ 2" (22 + 1) Aslkr) Pcos 6) (11-74)
i=p)

which we will find exceedingly useful in discussions of coflision theory.

Problems

1. Consider / = 0 bound states for an attractive square well. Find the
eigenvaluc condition for a bound stace, What is the depth of the potentisl for a
state that is barely bound? :

2. Assume that the deuteron {consisting of a mewtron and a proton, equal
in mass} is a bound state with / = 0znd the potential square in shape and of range
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ro = 2.8 X 1071* cm. Given that the binding enesgy is —2.18 MeV, find the

depth of the potential.

(Hint. Expand about the case of zero binding energy discussed in Problem 1),
3. Consider neutton-proton scattefing, assumed ta be interacting through

a square well potential of mange 2.6 > 107" ¢m and depth 20 MeV, Calculace che
phase shift as a funcrion of energy for very low energies, tor / = 0.

4 Calculate the [ = 0 phase shift for a squate well potential. Use the pro-
cedure outlined following Eq. 11-65 to work out both the attracdive and the
repulsive potential case. Discuss vatious limits, such as E large and small, ¥,
large and small.

5. Show that for / = 0 scatering by a square well of arbiuary range and
depth ¥/, it is always possible to write the phase shift as an expansion

oty = — -+ rg £2/2 + 039
I

Obcain an expression for # and r.g in terms of the paramerers of the well.

6. Consider a potential of arbitrary shape thac vanishes for » 2= 4. Let the
logarithmic derivative of the radial function inside the potential,

1 dR(r)
PR
be a slowly varying function of cthe energy. Consider 7 = 0.
{a) If the patential has a bound state with energy, Eg, what js the value of
Jo(Eg)?
(b} If f(E) is independent of E, what is the phase shift as a function of
energy?
(e} If H(E) = fu(Er) + (E — Ea) f, how does 5’ enter into the phase
shifr?
It is simpler to work out (b) and (¢} 2above in terms of & cot §.(£), instead of the
phase shift, and thar is a preferable way to present your results.

7. Give a genetal argument for why 3,(£) should be an odd function of &
Check that this is so for the square well [using (11-65), for example]. Show that
S{—k) = $*(8)

where 5:(#) is defined in {11-41).
8. Calculate che function 5:(£) for & potential
Vir)l = = r<a
Virl =0 ro>oa

Consider the / = 0 phase shift. What is it for £z very small? What is it for £« very
large? Note that this porential is 2 model for an impenewable sphere.
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9. Use the solution (11-63) together with the values of the spherical
Besse] functions near the origin given in (11-25) and {(11-26) ro show thar
tan 84(£) — 0 as £— 0. How fapidly does it approach zeto for a given I

10. Consider the / = 0 radial equation for the potential

V(f) — Vo[rn(:—ru)fa — 2 q—(i—rn}."n]
(known as the Morse potential). Find the energy cigenvalues by simplifying the
differentia) equation. Do this by defining a new variable # = G~ with C
chosen to simplify the equation as much as possible, and then treating the
equation in the manner that the simple harmonic oscillator problem was meated
i Chaprer 5.

Plot the potentizl. Show that fof a deep, wide potential, the low-lying
bound states approximatc those of a harmonic oscillator, and explain why
this is so.

References
The general properties of second-order differential equations in che context of
quantum mechanics are discussed in
J. L. Powell and B. Crasemann, Quantum Mechanics, Addison-Wesley, Inc., 1961.
A comprehensive discussion of such £quations may also be found in

P, M. Morse and H. Feshbach, Method: of Theoretical Physicr, McGraw-Hill
Book Co., Inc,, 1953,






chapter 12

The Hydrogen Atom

The hydrogen atom is the simplest atom, since it contains enly one elec.
uocn. Thus the Schrédinger equation becomes a one.particle equation after the
center of mass motion is separated out, We shall deal with hydrogenlike atoms,
thac is, atoms containing one electron only, but allowing for a nucleus more

coemplicated ¢han a single procon. The potential then is
2
Fir) = — z (12-1)

r

and the radial Schrédinger equarion is
f 4 2 4 Zr I 7?
(___,+ i—)1{-1-2—':{:E+--— - -(—i:rﬂ= o (12-2)
r K r urt

We will concentrate on the bound seates, that is, E < 0 sclutions. It 15 con-
venieat to make a change of variables,

8u| E| |12
p= (—“f!—zl) r (123)
The equarion then reads
4R 2 4R NI+ 1 ( X 1)
—_— 4= R+{——=JR=0 12-4
dp? g dp e p (12-4)
whete we have introduced the dimensioness parameter
Ze? m )l;g ( et )m .
A= — = I - -
2 (2|EI 2{E| (123

The second form makes it easier ta compute with it, since a = 1/137 and the
energy is expressed in units of the rest mass; the first form does, however, make
. cleat that the velocicy of light ¢ does not really appear in the equation, thac is,
that it is sweictly a nonrelativistic equados,

195
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We try to solve (12-4) in what is by now 2 familiar way. Fitst, we extrace
the large p behavior, Fot farge p, the only terms that remain in the equation are

— —-R~0p (12-6}

and the solution, which behaves properly ac infinicy, is R ~ ¢, As in amr
eatment of the harmonic oscillaror, we write

R{p) = e Glp) (12-7)

substitute this into (12-4), and obtain the ¢quation for Gip). A litle algebra,
which we do not reproduce, leads to the equation

NG 2\ 4G a—1 :(1+1):| _
—_——fl -] — ———-—t | G = 2
gt _(1 p) dp_+|: P Iy 0 1z

We now write a power expansion for G(p). This takes the form
Gp) = oY, ad” (12:9)
=l

The facr that R(p), and hence &{p), behaves like p? at the origin was established
at the beginning of Chaprter 11 for all potentials satisfying {11-2). When (12-9)
is substituted into the differential equation, we find a relation between vations
coeflicients @.. Fhe recursion relation is obtined from the differential equation
obeyed by

E

Hp) = 3 aw® (12-10}

=0

whicheis

#H ! dH rA—1-—1{
—+(2+2—1) —;H=o {12-11)

=y
dp® o dp P

as can easily be obtained by substituting Gip) = p'H{p} into (12-8). We then have

z [m:” = D o+ e (ZH- o l) + -1~ a,p"__‘] =0
r :

]

(12-12)
that is,

{0+ Dl + 21+ 2 ] + (A= 1 — £ — ) du} g =
w0

Since this must vanish tezm by texm, we get the recursion reletion
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@1 a+l4+1-—-2

= 2.
o Gt DET A+ (12:13)
For large # this mrtio is
1
Tt = (12-14)
ER

and, a5 for the harmonic oscillater problem, we can show that we do not geta
solution R(p) that is well behaved at inficity, unless the series in {12-9) termi-
pates. ‘This means that for a given J, for some # = 7, we must have

A=m+I41 {12-15)
Let us introduce the principal quarinm number # defined by
o R=n-4I+1 {12-16)
Then, it follows from the fact that », > 0, that
Laz>i41
2. nis an integer
3. the relation
' A== {—_
implies that
1, (Za)?
= — - 2.
E 3 i (1217

a result familiar from the old Bohr model. Notice thar it is the reduced mass char
appears ‘in the expression; this, of course, is not peculiar to the differentia)
equation approach, In the old Bohr theoty, wo, a ptoper treatmnent of the
dlassical orbits, subsequently to be restricted by the quaatization of angular
momentum condition, wounld have introduced the reduced mass in the tnergy
formula. The presence of the reduced mass

mM

= — 121
s m+ M ( 2
where m is the electron mass, and M the mass of the .nuclcus, means that the
frequencies o '
_ E; — E; __ mc"jzﬁ ¢ 1 i
CHT TR T + m/M (ch) nd n,? : (12-19)

differ slightlj for different hydrogenlike atoms. In particular, the difference
between the hydrogen specorum and the deutetium spectrum—where M, che
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Fig. 12-1. Orbits for & potential that does not bave the exact 1/r form do not
close upon themselves and precess as shown hete. The osbies remaip planar 25 long
#5 the povential is radial,

nuclear mass, is very close to being twice the protan mass—was responsible for
the distovery of denterium by Urey and collabotators in 1932."

The enetgy does not depend on /, that is, for 2 given » the epergies of all
the states such that / 4 t < = ate degenerare. We did expect a (2/ + 1)-fold
degeneracy of the energy states for a given /, since the mdial equation did not
depend on #; here we find thac although the radial equation does depend on /,
there is an additional degeneracy. Such a degeneracy was formerly called “acci-
dental,” since there was no obvious reason for it. This, however, depends on
what one mesns by “obvicus.” It is already known in classical mechanics that
the potential 1/r has some special features: the arbits consist of ellipses that
maintzin their ofientation in space, instead of forming precessing otbirs (Fig.
12-1). Small modifications of the potential do cause a precession. Such modifi-
cations may come from a vatiery of sources, for example, che perturbations due

10 other planets, in the Kepler problem. In considering the planetaty orbic of -

Metcury, it was found that after allowance was made for the effects of ocher
planets, a precession of the perihelion in the amount of 42" per century re-
mzined unacconnted for, and this was finally explained by Einstein's genetal
theory of relativity, which predicted just the right amount of 1/#* potential to
be added o the Newtonian 1/r.

In quantum mechanics, too, there are pertutbations, so that the -degen-

1 There are, of course, other shifta in spectral lines that arise from relacvistic effects
and from rhe existence of electron spin. These will be discussed laer,
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eraCy i$ not really what is observed. In fitst approximation, however, we have,
for a given #, the possible}aa.lucs of{=0,1,2, . _,(#w— 1), and for each there
is the (2/ + 1) degenerady. Thus the total degeneracy is

#—1

i) =0 (12-39)\\

=0 ~

Strictly speaking, chete ate two possible states for the electron because of its spin,
50 that the true degeneracy is really 2a7,

Let us now retutn to the differentizl equation, If we sec A = x in the
recursion relation (12-13) so that

¢+ i+1—n

apyy = * 1 DG+ 2+ @ {12-21}
we find that
e A G a— (kD
ans O N DG+ 1D Wty 2
#— ({+1)
L@ty X

With the help of this we can obtain the power seties expansion for H(p). Equiva-
lently, we observe that the equation for Hip) is that for the awsociated Laguerre
polynomials: :

Hip) = LZ1H (o) (12-23)

The polynomials are tabulated and their various properties can be found in the
mathematical Jiteratare.? _

Aftet conversion back w the radial coordinare r and after normalization,
the fiest few radial functions can be compured, These are listed below. We use

g = 53 . {12-24)
ura
in the tabulation Rui(#):

) 82
Rifr) = 2 (i) Pl
e

Z \¥*
Bzo(r) = 2 (—) (1 - Z_r) P
. Zay, 2y .

? An exccemely useful book is M. Abramowitz and I, A. Seagun (eds.), Handbook of
Masbemativad Funcitons, Mational Burean of Standards Publiczrion, 1964.

e
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M2 Zl" ey
| Rﬂ(" = — ( ) Zﬁ Y

\/_ )s;s Zr z") —Zefsm
Ral?) = 3 En 1= Gay ‘

_ w’i EN (2N
R”(r}_Z'i\/?(Sﬂo) (‘m) ¢ {12-25)

The following qualitative features emerge from the sampling of rigensolu-
Hoos:

(a) The behavior of + for small r, which forces the wave function to stay
small for a range of radii that increases with /, is a consequence of the cenuifugal
repulsive barrier thac keeps the electrons from coming close to the nudleus.

(b} The recursion relation shows that H(p) is a polynomial of degree
rme = n — ! — 1, and thus it has », radial nodes (zeros), There will be # — [
“bumps” in the probability density distribution

"P() = AR (12-26)

When, fora given #, [ has its largest value / = g — 1, then chere is only one bump.,
As (12-23) suggests, and as can be seen from the solution to rthe differeptial
eguation,

g

Ry umlr) = yot gEram {12.27)
Hence P{r) « r* .~220/%0n wil] peak ar 2 value of » determined by
aP '
AP) _ (23?’“" -z ﬁn) g™ = p (12-26)
dr gt
that is, at
g
r==, (12-29)

whick is the Bohr atom value for circular otbits. Smeller values of 7 give proba.
bility disttibutions with more bumps. One can show that they correspond to
elliptical orbits in the larpe quantum number limit.

{c) Plats of the radial probability depsity P{r} for finding the electron at a
distance r from the origin can be consttncred with the help of the wave func-
tions. Figure 12-2 shows the general pattern. We must remember that the wave
function afso has an angular pare, whose absolute square is Py (cos 8)%. Plors of
the associated Legendre funactions Py=(cos 6) are given in Fig. 12.3. As »
increases, the probability density is seen 1o shifc from the z-axis coward the
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Fig. 12-2. continued

equatoria] plape. When |m| = /, then | Py (cos 8)!2 « sin® 8 as can be read off
from Eq. 10-55. This function is peaked about# = /2. As / increases, the widch
of the peak can be shown to decrease like 712, and thus for large quanrum
numbers we ger the classical picoue of phlnar orbits. The foite width of the
peak can be understood from the following considerations. When |m| = /, we
have L;? = 2 and consequenty L.* + L,! = ! Thus the angular momentum
vector can never be perfecdy ofienced along an axis, Incidentally, the degeneracy
in m allows us to orient the "orthit" relative to some other axis, so that thete
really is no distinguished z-axis. Thus a state that is an eigenstate of L, with
eigenvalue ! will be “oriented”’ in the x-direction. The wave function will now be
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Fig. 12-3. Shapes of the associated Legendre polynomials as a function of
the angle between the z-axis and the equatcorial plane, denoted here by the x-axis.

x P218)

a linear combination of the Yi.(f,¢}, bur because of the degeneracy, the cnctgjr
will be the same a5 for the x-oriented otbits.
{d) Given the wave functions, we can calculace

(r} = j . dr 2[R ()2 (12-30)
Some useful expectadon values afe given below:

) =~ B — K+ )]




The Hydrogen Arom 207

)= ‘4’2‘% st + 1 — 30/ + 1))

(-2

(5)- pr (25)

Problems

1. Compare the wavelengths of the 2P — 1§ wansitions in (1) hydrogen,
(2) deutetium (neclear mass = 2 X proton mass), (3} posittonium (a bound
state of 20 electron and 2 posicron, whase mass is the same as that of an electron).

2. An electron is in the ground state of witium, for which the nuclcus
consists of 2 proton and two neutzons. A nuclear reaction instantaneously
changes the nucleus o He?, that is, two protons and one neurron. Calculace the
probability that the electron semains in the ground state of He?, Whar is the
probability that the electron is free, with momentam J.

[Nate. The momencum eigenfunction for a frec elecuron is #74(2nk)~32 ]

3. The telarivistic analog of the Schrodinger equation for spin @ electron
{thus not.applicable to the real electron) is the operatot version of

(E— V) = Pt + it

E Ze 1\ mcyt
(E_?T) =-V‘*"+(§)*

{2} Find the radial equation.

(b) Find the eigenvalue spectrum by noting the dose relationship of the
radi;lleequuion obuained in (a) with the radial equation for che hydrogen arom
problem,

that is,

4. Using the expression for {1/r}s; calculate the expression for
2
Thni = (‘L)
L

2m

for en arbirrary hydrogen atom eigenstapé (with Z arbittary). Show that generally
for this potencial Lo . :
(Ty=—1(»

" This is a special example of the Virial sheorsms.
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5. An electron in the Coulomb ficld of a proton is in 2 stce described by
the wave function
Wdsoo(e) + Han(r) — uofr) + V10 gy ()]
(2) What is the expectation value of the energy?

(b) What is the expectation value of L%
(c) Whar is the expecration value of L7

6. An electron in the Coulomb ficld of a proton is in a stare described by

the wave function
¥(r) ( z )m e
r=1—F e
VT

What is the probability that it will be found in the ground state ﬁf the hydrogen
atom?

7. Anclectton is in the » = 2, [ = 1, m = 0 state of the hydrogen arom,
YWhat is its wave function in momentum space?

8. The expectation value of f{r,p) im any stationary state is 2 constant.
Calculace
d i
0= —={rp) = 5 {HrpD)
for 2 Hamiltonian

H = p*2m 4 Vir)
and show that

(Z) = wvvin

Use this to establish the pesule of Problem 4.

9. Use the techniques develuped in this chapter to discuss the three-
dimensional harmonic oscillator problem, with

&
H= » + Lo
2m

Note that thé associated Laguerre polynomials also appear in this problem.

References

A very thorough discussion of the hydrogenlike atoms is wo be found in

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge
University Press, Cambridge, 1959.

The problem is discussed in every book on quantum mechanics.




chapter 13

Interaction of Electrons with
Electromagnetic Field

I Chaprer 12 we discussed the interaction of an electron with the static
Coulomb held due to a point charge. To generalize this to the interaction with
an external magnetic o electric field, we must first review the classical theory.
Maxwell’s equations in Gaussian units read, in the vacuum,

vBirs =0 _ (13-1)
v X ErH + 1 9Brs) =0 (13-2)
¢ O
v-E(r,s) = dap(rs) : (13-3)
v X Br — t a—E;—:*iJ = 4_"".]-(,,;) (13-4)
[ £

where p(r,1} and j(x ) are the charge and current densities thar are the sources of
the electromagneric fields Efr,#) and B{r.#). The consetvation of charge equation

Bplr.5)
Or

+Vjr =0 _ {(13-3)

is 2uromatically sadisfied. _
We may satisfy the first «wo equations by expressing the fields in terms of
a scalag potential ¢{(r#) and a vector potentel A(r.2)

B(r,r}i‘: v X Alr,)

A(r : -
Eirt) = — Hi——a—(”—ﬂ — P(r,r) {13-6)

R
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The fields E and B do not detetmine ¢ 20d A uniquely. New potentials, given by
A = Aled) — V)

#(rs) = ¢led) + 1 3ws {13-7)
¢ O

ace casily seen to yield the same E and B fields, The transformation from the set

(A,9) 10 (A",¢") 13 known as a gange traniformation, and the invariance of Eand B

allows us to chogse che arbitrary funcucn f(r.#) in the most conveaient way:
The source-dependent pair of equations (13-3) and (13.4) now read

—V%(i-,r)' -1 (v -Aj = dmplr,t) (13.8)
¢ o
and
1 3*A(rs) 12 _ 4r

VX(V.XA}+ = o -+ . arve#u ‘](l’,t)

which mzy be rewricten as
o 1 Ay Al 99;) _ -
VEA(r.7) -t"‘2 ™ +Vi{VA 4 o . i) (39

1f the charge distribusion is static, tha is, p(x} is independent of time, it is con-
venient to choose the gauge such that

V-ACH = 0 ' (13-10)
This choice of fir,s) is given the name of Coulomb Zauge, In thar case we have
—Vib(r) = duo(r) (13-11)

chart is, we have a time-indcpendeﬁt scalar pocential, and then the equation foe
A(r,f) reads

—%Alr + %a’_t;:‘i) = 4—: v (15-12)

When the chatge distribution is not static, it is more convenient to choose
the so-called Lerentz gange for which
VAR + - 2ED_ (1319)
e or - _
This leaves the equation for the vector potential unzltered, bur now the scalar
equation also obeys 4 wave equation. A technical point-worth noting is that the
< relation

VXOXA) = —VA + v(v:A)
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used to obeain (13-9) is only valid in carresian cootdinates. Thus, VA(r,2), as it
appeats, must be celculated in terms of x, y, and z.

The equation describing the interaction of a point electron of mass g wich
an electromagnetic field is the classical Lotentz force equarion

p % = — [E(r,t) +-x B{r,t)] (13-14)
1 Fd :

We now asscrt that this equation will be obtained if the classical Hamiltonizn
for an electron in the ahsence of fields

2 .
Ho=E (13-13)
2u
is changed by making the alteration
p—p -+ EA(r,t) (13-16)

and adding the potential sd(r) (we shall deal with staric scalas poteatials),
$0 that :

1 v 2
=— -A 13-17
z,;["ﬂ (r.x)] + abte) {1317)
‘We shall leave the proof of this statement as an exercise for the reader.! The
cotesponding Schrédinger equation with the static potential tken over to the
righe side is

1 fR :
P AT I E T CRES AP S
2ul\i 4
The feft side is ] '
&
i(i;v + fA) (—.w + wa)
2u\ f ¢ ] c
mn w#h ih &
= - — — —A- -_—— ‘A i
ZFW p” vy 2‘“‘(" )W+ZMA’-&
#it ieh & _
= vy — ™ Awy+ ZF“W' (13-19)
For a constant uniform magoetic field, B, we mzy take? .
« A=—1rxB (13-20)

! See fontnote 4, p. 216.
. 2 Note dhat this choice i3 not unique, since we may add the gradient of any funcrion
to A without changing B. This choice, however, is very convenienc,
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"This means that the thiee components of A are
A= —’5(1’3,_- zBy, xB; — xB,, xB, — yB:}
and coonsequently
Vv X A={B:.+ 3B, B, B)
=B

Hence the second term in (13-19) becomes

2R X Bwy = ——'ﬁéBrxw
2pc 2pe
k . :
= M-Brx—w—-—nw (1321}
2uc
and the third term is
— X By =—[B2— (r-B)Y] ¢ = '8 (13-22)
m’ .uc* Bpc®

if B is the dircction that defines the z-axis. This is of the form of 2 two-dimen-
siopal harmonic oscillator potential.

Let us compate the magnitudes of the two terms. The ratio is estimated
with {L.} tuken of ordet % and (x® - 3*} of ordet #%, with 4, the Bohr radius:

(#*/8pr?) ao?BE Ll ¢ B 1 B
(¢/2u) BB~ 4 Fe efad S48 t/ad
. B
548(4.8 X 1071)/{0.5 X 10-%)*
B

— l _2
Y9 X 10° gauss - (13-23)

Thus in ztomic systems, with the kind of fields available in the laboratory, that is,

B35 1o gauss, the quadraric term is cerrzinly negligible. The term linear in B,

compared with the Coulomb portentia} enctgy can be estinated in a similar way
(e/2p) BB 1 Fluc 1 B B

—_—— — —— A R ————

¢/ aq 2 ¢fa 274 efas® 5 ¥ 10° gauss

(13-24)

$0 that the linear rerm will only slightly perturh the atomic energy levels. The
quadratic term can become very impostant under two conditions: if the mag-
netic ficld is very intense; it is believed that fields as large as 10'® gauss may
exist on the surface of neutron stars, and this would radically alier the structure
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of atoms.? The quadratic term will also be important when we consider the
macroscopic motion of an electron in an external field.

Let us firse consider the linear term alone, and pick the z-direction to
coincide with that of B. Then the Hamiltonian with B = 0 is altercd by the
addition of

H =B, (13-25)
Zuc
If we define the frequency, called the Larmor frequency,
B = g {13-26)
2pe

and deal with energy eigenstates that ate simultaneously eigenstates of L? and
L, then che extra term (13-25), when acting on an eigenstare, yields 2 number,
namely,

Hittoan(r) = B oty (6 (13-27)

whete  is the z-component of the angular momentum cigenvalue, with —/ <
m < I Thus the existing egergy levels, with their (27 + 1)-fold degeneracy
are split into {2/ + 1) components that are equally spaced, with enetgies given by

Ly

2 n

E=— + fom (13-28)

The size of the splithg is

B A (2)=

e 2ur \e/at] ast
-5 () G2)
T 2w \ B ef gt

= (a%u®) o

8,/ dne

B )
= (2.‘1 v 10") X .15.6 eV
Since there are selection rules (ro be discussed later) according to which
ooly tagsitions in which the m-value changes by zeto or unity are allowed, ic
tuens out char the single line representing a eransition with B = 0 splits into
#hree lines, as tan be seen i Fig. 13-1. ‘This effect is the rorma! Zesmar effect,
Actually, unless che elecron spin state in the atém is one in which the spin is

8ee K. Cohen, L. Lodenquai, and M. Rudennan, Phys. Rev, Latzers, 23, 467 (1970).



e x .m =2
Pt eBM2pc
/"/_,_.—-"" 7 m=1
= ——
i=2 e, =0
_*_ﬁi“::'-ﬁ___ L4
~ = = —1
H““...‘
o~ m- -2
¥
L] -
— » B2 ]
AF | n_ N
=4 & E
| | |
i g g
y
- - wm=1

.—-“"Mf 9 B .
f= ]_J_——.:—‘—‘ ———————— — 1 = (1

R =]

et ot L)
AK + eBf AE  AE — eBh
b 2ur

Fig. 13-1. Normal Zeeman effect: of the 1% possible transiions berween che
{= 2and /=1 states, split by the magnetlc field, only 9, comresponding o Am =
m; —#; = —1,0,1 occur, in the form of three lines.

zero, the juteractions of the eleccron spin with the magnetic field changes the
pattern predicted above. The mote common anomalous Zeeman efect will be
discussed when we have leerned about spin.

It is of some intetest to discuss the solution of an electron in a constant
magnetic field under conditions where the B? term is oot negligible, and where
the Coulomb potencial can be neglected. Under those conditions, with B again
chosen o define the zdirection, the Schridinger equation reads

2°B? :
—-"'-W—I-—M-l‘—!(x’-l‘?’)ll*:& (13-29)
2pc B .
where we have used {13-19), (13-21), and {(13-22). The presence of the ™' potential™
(x* + 7 suggests the use of cylindrical coordipates for the separation of the
variables. Wititing
X = pcos ¢
y=psin $ (13-30)
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we follow the procedute outlined at the beginning of Chapter 10 to arrive at

e con é fa sing O
— = cosh— — .
ox O p N
o 2  cosg D
2 = sin ¢ o =+ . % (13-31)
and hence
fa at | ) 1 o
V"az=+ap=+1$+}?@ (13-32}
H we now write
W) = mu(p) e gitr (13-33)

we find that che differential equation satisfed by z,{p) is
du 1 du st e R? 2 B : '
Jem ( uB _ eBhm b’) “=0

At o de 2T ama A Ee

x= |2 ]
N ohc © (13-35)

we g@an rewrite the equation in the form

If we introduce che varisble

e 1de
where
_ duc Rkt
)y .— B (E ,——2“ ) — 2m {1337}

It is fairly straightforwurd to determine that (a) the behavior of #{x} at infinity,
determined from

P
P _
is ¥{x) ~ #="'2 and (b) the behavior of w(x) neat x = @, determined from
do 1 dn »t
PR Ll

is #(x) ~ &', We thus write

by = x®emetin Gl (13-38)



216 Quanrumn Physics

and determine the differential equation obeyed by G(x).
A lieele algebra leads to

&G 2|m| +1
2o 2

This can be broughs inte the same form as (12-11) if we change variables to

)§+g_2_2|m|j6=0 (13-39)

Ly

y = x? (13-40)
‘The equacion then takeg the form
A£G |m| 41 )dG A—2— 2|m|
A (“ )t
& ¥ 4y

We can now proceed as in Chapter 12, Comparison. with (12-11) shows that we
must have

=0 (13-41)

1 L+ |m)
—_h———— =, 13432
4 2 " (1342)
LY
as an eigenvalue condition, with #, = 0, 1, 2, 3, . . . . This implies that E —

%283/ 2, the energy with the kinetic energy of the free motion in the z-direction
. subtracted out, is given by

ik eBh
E——=
2u 2uc

{2+ 1 + |m| + m) (13-43)

and
G =L" @y {13-44)

Oue discassion of this solucion will be confined to the classical limit, To do
this, we first teview the classical theory. Given the Hamiltonian (13-17}, without
the scalar potential term, we have!

vzm (13-45)
»
and with A = —3ir ¥ B, we obtzin
pr)(v=r)(p+§rx (-3 X B)
=L- g:[r(r-B) — PR (13-46)

¢ The readet who is not familiac with mechanics as formulaced by Hamilten can
convince himself that the equations dx/dt = JH/3p,, dp./dr = —al/dx, and 50 on, are
equivalent 1o Newton's equations for H = p8/2. + V{r). The equarions also hold for che
smoce complicated Hamiltonian [p + eh(e) /e]*/ 24
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with the help of the identity
a X (b X c) = bla-e) ~ cfa-h) (13-47)

We rake the z-compoenent of this equation to obtain
WX W) = Lo+ B (4 ) .
that 13,
pov = L, + Z—I: o (13-48)

The expression for the force on the elecrron

¢
F=— - vXB (13-49)
yiclds the relation
2 ;)
= - 5’;— {13-50)

for citcular motion. This zelation, together with (13-48), after a little algebra,
yields, .

*‘_ . Lyt = :—f L, {13-51)
and
2‘. e
p= [E L,] _ (13-52)

We now return, to the expression for the energy, (13-43). Because of the
smallness of #, the energy can only be of maoscopic size for reasonable B, if
2r + 1 + [m| + m) is very large. We have two cases: (a) If m < 0, this
implies that #, is very latge. Now n, determines the degree of the polynomial
L'7! (3, that is, the number of the zeros in the function,” and if that is very

Jazge, the function cannor be large for some small range of y where the dassical
orbit would be located. (b) If m > 0, the coefficient is (2r.+ 1 + 2m), and
this can be large, with #, smell, provided that # is large. The EDergy now is

< R B

2 jut ; fim (13—53}

* See Eq. 12-23, the developroent leading up va i, and the discussion an p. 200.
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in agreement with the classical result. Note that
Le=Fhm | (13-54)

i3 positive, as expected.

We can elso show chac the radius of che orbir, 25 determined by the peaking
of the radial probability disttibution, cottesponds to the classical value, Let us
take 7, = 0, In that case Li™(3) is just a constant, and che square of the wave
funceion is, according to (13-38),

Pix) = 17l = (13-55)

This bas 2 maximum where "
.__:l: = (2|m|le"l -1 _ 2xllll|+1) 2 =p
that is, at
x=+/ml (13-56)
which yields
2 1z
p= (é ﬁm) . (13-57)

This problem is a beautiful illustration of the cortespondence principle.

There arc several interesting guantum mechanical effects connecred with
the interaction with 2 magnetic field that we now wim to. The Schrodinger
equation (13-18) sppears to vickre the principle of gauge invariance, since it is
A(r.r) that appears in the equation, and under the tmnsformation

A=A+ V) (13.58)
the Hamiltonian is changed according to

1% e Y 1fR £ ¢ t

— |-y +-A) > (=v+ A+" -
zﬂ(‘, +c )H’Zu(f +£ +;Vf) .(1359)
It is possible 1o save gauge invariance by using the fact that a change of the wave
function by a phase factor, which may depend on r, has ao physical conse-
quences. Thus if we require chac {15-58) mwst be accompanied by the etans-
formation '

P) — 0 yirg) (13-60)
then che lefr hand side of oq. (13-18) becomes

1 {5 ¢ ] I3 ¢ 2 in
;(?7+;A+;Vf)-(iV+cAchf)e '
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i( viat! vf) [ (iw+£w+§w+ﬁvw)]

- e‘ ( v 4- A + - 7f+ rm,) ¢ (13-61)
Thus with the choice
A==—t 7 (13-62)

thac is, with the cransformation law
W) — ¢ EANER e gy (13-63)

gauge invariance is restored.
Ia 4 field-free region, B = 0, which implies that

vXA=20 (13-64)
that is, A may be written as & gradient of a function _
A=vwf ' {13-65)

Ia 2 fie]d-free region, we may therefore describe the mation of an eleceron in two
ways: either we do not consider the presence of a field at all, and write

1k _\ '
—\5V) VO [v=Ep (13-66)
PITIL N .

for the energy eigenfunction equation, or we write the equatiop with the vector

potential given by (13.65)

1 4 ¢\ '
T (—_v + 'A.) }'l’ + V(r) \V = Eﬁ" (13-67)
.21.1 f ¢
and wke
*r = g—litihe)s v (13-68)

The fuﬁction flr,) may be written in teots of Afr.9) by solving (13-65):
fien = [ ae-aws B

where the path of integratiom is taken from an arbitzary fixed point, for example,
the otigin, ot infinity, to the point r. The inregral only makes sense if B = 0,
that is, in a field-free region, since the difference in the integral along wo dlf
Jferene paths, lebeled 1 and 2, is
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r
Fig. 13-2.  The inceprals f; A(r7)-dr’ along path Land path 2 are generally noe the
[}

same, since the difference is equal 1o the magnetic fux @ enclosed by the closed logp.

fl a’-Alr g — fz arAly'y) = f ar'-AlY'.p

=fv'>(A(r’,t)-dS=fsB-dS=@ (13-70)
-]

where we have used Stokes' theorem, and whete & is the flux of magnetic field
through the surface spanned by the two paths (Fig. 13.2). Thus only if & = 0
will the phase factor in (13-68) be independent of the choice of path in the line
integral, Such an independence is tequired if we insist that the wave funcrion be
sinple-valued.

If the two paths tnclude flux, chen the wave functions of electrons traveling
along the two paths will acquite different phases. An interesting consequence
is that if 2n electron moves in a Reld-free region thac is not simply connected,
but surtounds a “hole” comtaining flux &, then upon completing a citcuit,
the electron acquizes an additional phase factor e®*¢. The requirement that
the eleceron wave function be single-valued, so that the phase factor is unity,
itnplies that the enclored flux is quantized

2ufic
¢=Tn =0, £1, -2, ... {13-11)

Such a situation zrises in the motion of electrons in a superconducting
ring surtounding a region containing flux. The first experiments, done in 19619
were based on the following scheme: a ring, made of a supetconductor, is

“B. S. Deaver and W. Fairbank, Phyr. Rex. Latters, 7, 43 (1961); R. DM and M.
Wabaner, fid., 7, 51 (1961},




Interactian of Electrons with Electromagnetic Field 221
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Fig. 13-3. A superconductor at temperatate T > T, (the critical temperature)
acts like any other metal, and magnetic Aux lines can penerate it. When the tem-
petature is lowered until T < T, the ring becomes superconducting, and expels
magnetic fux Jines. Some of these become trapped inside the ring. It is the rapped
flux that is found to be quantized.

phaced in an external magnetic field at a temperature above the critical tem-
perature, 5o that the metal is nor superconducting, Since superconductors expel
magneric ficld lines, excepr for a thin sutface layer, B = ¢ inside chem, This is
the Meisiter effect” When the ring is cooled below the critical temperatute, it
becomes superconducting, and magnetic flux is trapped inside the ring (Fig.
132.3). An ingenious measurement of the Aux shows that (13-71) holds, with the
modification that

_ ke

T

This is consistent with our present understanding of the phenomenon of super-
conductivity, according ta which, “'corelated states™ of pairs of elecrrons (with
charge 2¢!) form the fundamental entities that one deals with in the super-
conductor.
Another manifestation of the dependence of the phase of the wave func-
tion on the flux, can, in principle, be seen in an interference experiment (Fig,
* 13.4) in which 1 solenoid confining magnetic flux is placed berween the slits in a
_two-slit experiment. ‘The incerference pattern at the screen is due to the super-
position of two pares of the wave function

v=q91+ s . (12-73)

! I strongly recommend Chapter 21 in the Feynman Lectures on Phwicr, Vol. 1L foran
excellent discussicn of these macroscopic manifestations of quammum mechanics,

(13-72)
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o h
Electron /’Jiu/“

SOHIrCe
Path 2 |

Fig. 13-4, Schematic sketch of experiment measuring shift of clectron inter-

ference pattern by confined magnetic flux.

whee 1 denotes the parc of the wave function thac describes the elececon follow-
ing path 1, and y the part appropriate to path 2. In the presence of the solencid

we have
l" = kh ei:fk[.d’r‘d + *2 cjeﬂtj}dr.-ti

= ("1 ei’l;"‘l + \('l) ‘J"fn.s_f,dro.d

(13-74}

The flux thus causes a relative charge in phase berween ¥q and ¥y, .and this will
change the interference pattern. This effect, first pointed out by Aharanov and

Bohm, has been. observed experimentally.®

Prob lcl_ns

f. Show that with

H= :;2 + ¥in
the equations
S dc  dH '
& op
dps _ _ OH
di ox

SR, G. Chambers, Phys. Rew. Lewters, 3, 3 (1960).
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yield the equations of maotion

d"x___ﬂ
& T

2. Show that the Hamiltonian

*

1 ¢ Rl
H=— —A@rs) | - —
2p [P + 4 u ;):| r
yields the Lotentz force equation

: #—% = —..- [E{r,l) + % X B("J}]

(Note. Jn your calculation use
OA dc QA 4y DA 4 DA

“amn =24
LAfepy = 22 A OA £ A
dr = & & W d Yy A

since the fields that enter into the equation of motion {and the Hamiltonian)
must be evaluated at the position of the parricle.)

3. CGalculate the wavelengths of che three Zecman lines in the 3D — 2P
transition in hydrogen, when the latter is in a field of 104 gauss.

4. Consider an elecron confined to a tegion between two cylinders of
mdii 4 and b respectively (5 > ). (a) Separate the Schrédinger equacion in
cylindrical coordinates (cf. Eq. 13-32), and show that the equation can be
solved in terms of Bessel functions. What are the conditions for the determina-
tion of the energy eigenvalues? (b) Discuss the degenetacy of the energy eigen-
functions? Whar is it due co? For Bessel functions, see note after problem 8
below,

5. In this problem we work out an example showing how an enclosed
magnetic flux changes the angular momentum of a particle in a region outside
the flux tube. Consider a magnetic field confined in ¢ cylindrical region p < 4.
Let the fux be €. In the region p > « there is no magnetic field, and hence the
vectar potential is of cheform - ' ' :

' Alpf.z) = VA(p8,7)
(2) The choice of gauge ¥-A = 0 implies that
o ' V=0 '

} %
8how that 4 solution of this equation, sarisfying (13-70), is

1
A=—3a¢
2r
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(b) Calculate the angular momentum about the symmetty axis
(rX v =L = [rx (%v + EA)]

in cylindrical coordinates, and show that for the above A it is given by
- E o @

i EE ; 2
{c) Solve the eigeavalue problem T = M, and show that single-valued-
ness of the eigenfuncrions leads to flux quentization.

6. Show that for a system described by the Hamilconian

_Ip + (/) A
2u

H
the flux j, which satisfies
2 g +v-j=2a
is given by _
fi 2ie
i=— ey — * = A *
J _,J.p_[kﬁ' LA Lt Janiae {r.!)\i'ib:l
Show also that the Hamiltonian equations of motion of Problem 1 imply that
4
—L=0
Z
where
L=rx (p + §A(r,z))

7. Consider the problem of a charged particle in an extetpal magnecic ficld
B = (0,0,B) with the gaupe so chosen that A = {—»B, 0, 0). What are the con-
stants of the motion? Go as far as you can in solving the equation of motion,
and obuin the energy spectrum. Can you explain why the same problem in the
gauges A = (—yB/2, xB/2, 0), A = (—)B, 0, 0}, 2ad A = (0, xB, 0) can sl
represent the same physical situation, even though the solutions look so dif-
ferent in all three cases?

8. Consider a charged particle in a magnetic held B = (0.0,B) and in a
crossed electric field E = (E,0,0). Which of the three gauges menticoed in
problem 7 would you use for this problem? Solve the eigenvalue problem.

Note. ‘The solurion of the equarion

1 du nt
.séz"+ zdz+(1__z-;)“_o'
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with » integtal, are known as Bessel functions, for the regular solutions

L®=( )ﬁﬂﬁf;

and Neumann functions for the irregular solutions

o (:2/2)25
E Bt DU

VRS

. El G |
{logy =05772..) rx,gg=(z—+ Z';)

They have the asymprotic behaviot

s (2 e (o= - )i 0(3)]
o () e 2) o2

A detailed discussion of their properties may be found in any beok on the
special functions of mathematical physics.

mw=%ﬁm@%——()

Refetences

The vatious aspects of clectron motion in a magoetic field are very intetestingly

discussed in

R. P. Feynman, R. B, Leighvon, and M. Sands, The Feynmarn Lectures on Physes,
Vol. 3, Addison-Wesley, Inc_, 1965.

3






chapter 14

Operators, Matrices, and Spin

A proper discussion of atoms is not possible withont consideration of the
spin of the electron. In spite of che suggestive name, this property of the electron
has no classical enalog, 2nd, as will snon become evident, it must be treared by
somewhat absttact methods. Forrunately we bave some preparation for this
further departure from a description closely tied to coordinate space, in that we
discussed both the harmonic oscillator (Chapter 7) and the angular momentumn
eigenvalue problem

L*Yim = 8/ 4 1) Y1
L,Yta = imY, (14-1)
by operator methods. For the harmonic oscillator we found states, defined by
1
B = (pHhy

(A" wy (14-2)

for which
Hu, = Bl + &) 14-3)
and we could also calculate che action of the mising and loweting operators on u,,
‘ Aty = V(5 £ 1) Bt (144)
and : '
Ay = Vb (14:5)

We also showed r.l;at

. ("m[xn) = dpn . (14'6)
a statement that can be made to hold, for the eigenstates of any hermitizn
operator (H here). If we take the sealar product of (14-3) o (14-3) with «,, we
find thac )
alHitn) = (| Hlun) = (2 + 1) fiw be
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{im| Ay = G| A1) = V(0 + D E Bppia
(| A} = (| Al ) = VB 850, (147)
where we have introduced the more symmetric notation
{u:]ou;) = {wil0|ay) (14-8)

These quantities may be arranged in arrays called rmatrives. The conventional
notation for a matrix My has the first index labeling the row, and the second
labeling the column of the array. Thus if we converc the scalar product
{tiw| H w, )} imtc H,, we find that

1/2 0 0 0
a S3f2 0 1]
_ ] 0 5/2 0
H = fa 0 0 0 7/2
. (14-9)
Similacly
0 0 0 0 ‘s
A1 & 0 0 -
0 2 0 0 .
t =
A= i 0o 0 V3 o .
{14-10}
and
6 1 o e
0 0o 42 0o -
A=~k 0 o D 43
: . . (14-11)

We shell call the arvay (&, F|ay,), where F is any operaor, and the u; are any com-
Plese set, a maprix vepresentasion of Fin the basis provided by the u;. This appeilation
needs some justification. The product of two matrices, for example, satisfies

(FSis = 20 AP in{Glas (14-12)

and we need to verify this relation for the “matrix representations” of the
operatars F and &. To do this, let us consider the state Gw;, and, using com-
pleteness, expand it in the form

Gy = E Contin : {14-13)
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The coefficients G, are given by
CG= {4 Gl (14.14)
Hence

(@ FGlausb = 3| F( Y Cata))

2 Coludl Fla,)

2 o Flaa Misn| Gl 5 {14-15)

which is the same a5 (14-12), provided we wrire

@i!ﬂ#n} = Fin {14-16}
and so on. It is a useful mnemonic device to write the unit opetator in the form
1= 30 fan )l (14-17)

and in that form it can be inserted berween the two operators Fand G in the
matrix element (| FG|%,) to give (14-15).
Further justificarion for the matrix connection comes from the relation

(| Bla )* = {Pua|tn) = {tn| Ftlttm } (14-18)

which shows that if che operator B is represented by a matrix, then the hermitian
conjugate operator F' will be represented by the hermitian Conjugate marrix,
since the lawer is defined by

{Fﬂnm =F (14-19)

Note that in our discussion we made no reference to the fact thar we
started out with eigenstates of the harmonic oscillator Hamiltonian. The ondy
thing that it special abesa them, is that they diagonalize the masrix represemiing H,
Wich another complete set, H would not be diagonal, and reading off its cigen-
values, that'is, the matrix elements when it is diagonal, would got be easy.

The ¥, were defined ta be states that diagonalize Lt and I, simultanecusly.
If we stay with a fix€d /, that is, with states in which only the m-value is vatiable,
then, with an abbreviated notation, the second of the relations (14-1) reads

Gt | Lol tm} = B b, (14-20)
Furthetmore (10-40) wich (10-52) implies that
| Lalbm) =8I+ 1) ~ m{m 4 DM 8pyy (1420)
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This leads to the matrix representations

o

0 4]
L=#k| 72 o .0
0 /2 0 (14-24)
for the { = 1 angular momentum operators. The rows and columns are labeled

with m = 1,0,—1 in order left to right and top to bottom. It is easy to check
that the matrices satisfy the commutation relations. For cxample

042 0 0 00 0 00 oVE 0
[L+,L_]=ﬁ’(o 0\/5)(1/5 co)—ﬁ‘(v’i oo)(o o\/i)
6 0 0 0470 N 0420/ 0 0

0

0

20 Q00 10 0
= fi*lo 2 —flo 2 0]=22lo0 o]=2i, (429
0 00D 0¢ 2 00 —1

Genetal relations between states can also be written in matrix fepresenta-
tioh. Consider, for example, a relacion like

¥ =Aé ’ {14 26}

0 0
0 0
0 =1 {14.22)
/2 0
/2

0
0 0

oo D 20O -

(14-23)
and

o

If we wke the scalar product of this with any member of a complete set wi,
we have

{wid) = (wi| Ad) (14-27)

Futthermote, the insertion of the unit operator, in the form (14-17) berween A
and ¢ yields

@il = 2 (il Alandmle) (14-28)
If we write {m,|¢}as a column vector a,
{| o) o
2| @) o

("'.‘H.) . (38I|¢) Ofs

(14-29)
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and similacly

(“lw’) -1
{“lw’) Bz

(”ﬂh&}_' (“S.W') = ﬂ.s

(1430)
then the matrix representation of ( 14.26) is
Bi= 2 Aion (14-31)
Thus matrices represent operators, and coh_:mn vectors represent states, The
scalar product (¢_Iu,.) = (wa|$)* is written conventionally in the form of 2 row
@la) > (of, o3, 0, . . ) ' (14-32)
so that the scaler product {p{y), for example, can be written as

@Y= 2 @lwa)(uniy)

= 2 @b, (14-33)

a

An eigenvalue equation is a special case of (14-26). It teads

Ap = ad (14-34)
and it reads _ '
Z A{llan = dda; ) (14_35)
in. matrix form. This is equivalent to
Ay — a A Aig o @
An Ay — & Agz T L4
An Axn Ap—a - ag =0 {14-36)

.

_and there will be 2 nontrivial solution of this equation only if the dererminant of
the matrix vanished-

‘ det|din — aBuf =0 (14-37)
This is & good way of finding eigenvalues (and eigenvectors) for operatars
represented by finite matrices, but for infinite matrices this is unfotrunately

oot so simple, o
It is indeed fortunate that there is 2n alternative (o representing opetators o
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by functions 2nd differentials, since not all operators can be represented in that
way. The simplest example is that corresponding 1o the angular momentum
= 1. Eq. (10-51) and {10-50) tell us chat

Yz +in = GeV/sin 8 g2 (14-38)
- and (10-54) allows us to compute

Ly o cos @
- VIR T\ ein 8

This, however, is not proportional to Yize _12 and furthermore it is singular at
8 = 0 and . Thus for I = § thete are troubles, and we must tun to matrix
representations Instead of talking zbout / = }, we shall talk about spin, § = §,
reserving the etcer / for the orbital apgular momentum associated with ¥ X
The spin operators are 3z, 5y, and 5, and they are defined by their commutation
relations : '

e T2 (14-39)

[szvsu = S . (14—4\0)
and so on. -
We wish to represent them by 2 % 2 matcices. {14-20) yields
1/2 o '
=% {14-41)
: 0 —1/2

and {14-21) gives

0 1 6 0 '
S5.=h S.= (14-42)
S ‘\\ o 0 1 o

. . R .
We may write this representation as

= }fid ’ (14-43)
whete

o o 1 o —F 1 W -
5, = gy = o, = : (14-44)
1 o i 0 ¢ -1

ate the Pauli matrices. They satisfy the commutation relations
[rwe] = 240, . (14-45)

and so on, as they must, to satisfy (14-40}, and they also satisfy

1 0
F: = UPB =g = =1 (14-4:6}
.01
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and
D'gﬂv = “—drﬂ'x
Ty = .—a,o',
Gyls = —,0y (14-47

which are relations peculiar to the spin } representations and do not hold for
the / = 1 mawices, for example,

The eigenstates of 5, will be represented by 2 two component column
vector, which we call gpinor. To find these eigenspinors, we solve

E4 4
5 ( ) = ;tgﬁ.( ) {14-48)
¥ v

that is,

or

(2)-=(C)

The plus eigensolution has v = 0, and the minus eigensolution has « = @,

We thus write .
' 1 0 _
Xy = A = . {14-49)
SonD 17,

for the eigenspinors comesponding to spin up [S; = +(1/2)#) and spin down
[ = —(1/2)A], tespectively.
An arbitrary spinor can be expanded in this complete sec

(O C)() e

"and the expansion posfulate yields the interpretation that |o |*and la_|? when
propetly normalized, so chat .

o a4 e |t=1 {14-51)

yield the probabilities that a2 measurement of § on the state (Z+) yields
(/D Fand —(1/2) &, respectively,




234 Quantum Physics

It is not necessary to keep 5, diagonal, If we look for the eigenstates of the
opetator 5, cos ¢ + S, sin ¢, we must solve -

u #
(55 cos & + 5, sin ) ) = fir ) (14-52)
v v

thac i,
: ] s —isindg P #
(cas¢+isin¢ 0 )(4’) l(f’)
‘This implies that _
va® — Ny _
e =\ (14-53)
Hence
A=l (14-54)

The eigenvectors corresponding to X = +1and A = —1 are

1 Pt 1 ¢ 2 .
W(,sm ) W(_,m) (35)

tespectively. It is intetesting to ohserve that if we change ¢ 10 & + 2x the solutions
change sign. This is characteristic of odd half-integex spin wave functions {fermion
states); although this does not violate quantum mechanics, since —1 is just &
phase factor, it dees mean that no dassical macroscopic wave pa.ckct can bc
constructed that has odd half-integral angular momentum.

Given an arbitrary state o, the expcctauon value of S may be calculated
We have

@iSla)= T 2 G@lD4isli)ile)

L | L) a+
(“-r, .ﬁ—) 5
0 1 [+ #9
(S:) = (o, a_) 4% )
1 0/ N

or, equivalently,

Thus
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= e o) ( ) = Moy + amay)

* * | _‘. a+ .
8 = ¥hiley, a2) _
i 0 a_
= %ﬁ(a’;_, a_)( ) ) = — “2£ (aff_cr_ —a_ay)
jay
- *
(&) = Hfila, o} = $ifle]? — Ja]®
' — (14-56)

Note that all of these are real, as expected for hermitian operators, .

We shall see later that the spin of an electron appears in the Hamiltonian
for the hydtogen atom, for example, coupled to the orbil 2ngular momentum.
When an electron is localized at a crystal lattice site, for example, it is often
possible to treat the spin as the only degree of freedom that the electron possesses.
The eleccron will have an inttinsic magnetic dipole moment by virtue of its
spin, and that magnetic moment! is

M= —'g-s (14-57)

2me
whete g, the gyromagnetic matig, is very close to 2,
£=12 (’1 + 25 + .. ) = 2.0023192 {14-58)
X

and m is the electron mass.
Fot such a localized elecron, the Hamiltonian in the presence of an external
magaetic field B is just the potential coergy

H=—M-B=—e@d-ﬁ (14-59)

dme

.The Scheddinger equation for the state ${) = [mé:; is
[

*A “classical” electron moving in a circle with angular momentum L will form a
cuwrreat loop whese magneric mdientis M = —/L/2av. Since the spinis a purely quanmum-
mechanical variable; one can srgue (14-37) only by analogy. For its justification ane needs
the relativistic Dirac equation from which the value £ = 2 ulso cmerges, The corrections to
£ = 2 come from quentum elecrrodynamics. The nontlassical aspects of spin were pointed
out by its discoverers, 5. Goudsmir wad G. Ublenbeck (1925).
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f——— = 8- Bg{ 14-60
A% =B 0 By (14-60)
If B is taken to define the z-axis, and if we write
a_,_(!) 3 oy
) = =™ {14-61)
a_[!) . [ 2
then the equation becomes

. 1 ] [
s ( " = g’Lﬁl—i( ( ) {14-62)
a_ dmé 0 —1 a_

The solutions correspond ta different frequencies w. We have, for w = egB/dme,

fo
(q“L) = ([1)), and forw = —{zgB/4arc), (a+) = (1) Thus, if the initial state is
[+

P : '
¢o) = {14-63}
5 _

then the state ar a later time will be

ae ™
=  uB
W) = ( o ) W= o {14.64)

Suppose that &t 7 = 0 the spin is an cigenstate of S, with eigenvalue +(1/2) &,
that i3, it "points in the x-direction.” This means that

( 0 1 ( a ( @
24 =15
I o ) & 5
-4 1 1
thar is, == . Then, at a later time
3 V2|
0 1 e—i-r
I i 1
{S;) = %ﬁ I (gm‘e- )( )____‘__( I )
V2 Lo/ VR

enm!
= E (e, e") ( ) = g cos 2wt (14-65)
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o —F £~
8 = B (™, ) R
V2 C\NfP o V2

$in 2o {14-66)

Similarly

LR N

Thus the spin precesses abou the 2-axis, the direction of B, with frequency

- 2B B

20 (14-67)

2me ~  mc

In 4 solid the gyromagnetic factor g of 2a electron is affected by the nature
of the forces acting in the solid. A knowledge of g provides very useful con-
staints on what these forces conld be, and it is therefore imporrant 1o be able to
measure g This can be done by the paramagnetic resonance method, which we now
describe.

Cansider an election, whose only degrees of freedom are the spin scates,
under the influence of 2 Jarge magnetic field By pointing in the z-direction, and
constaat in time, and a small oscillaing field B, cos w?, pointing in the x-ditec-
tion. The Schrodinger equation now reads

alr) B, B cos wf @(?)
5(r) ; By cos wt —B, b(5)

or, with
idj—@ = woalr) -+ w1 cos wt B(2)
a
i 3?52 = w1 COS wt {f) — woblf) (14-70)
Let
Al = alf) ¥
B = b5y ™™ (14-71)

Thesze satisfy the ‘equations
. 4A()
P

= w1 Cos wt Blp) £
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- %01 ei[zm—«).t B(I)

dB(#
a

i = cos ot A() e

- %‘01 e—l'(lnu—»)t A(ﬂ

In obraining these, we made an approximation. We wrate
cos af eﬁmi — % [ei(zmh}l + et'(ho—«}-l']

== ,} eifﬂm“w}‘

(14-72)

"Since we will be interested in values of w = 2wy, and since both are large, the term
thac has been dropped oscillates very rapidly, and we may expect that its con-
tribution averages mo zeto. A more detailed treatment supportis this observation.

We may eliminate B(1):

By = = AAW) —Ham—a

_ i
and use chis to obtain a second order differential equadion for A():
PAD G | et
S~ itm = SR+ S 4 = o

A trial solution is
A = Ala) &2t

When this i.s inserted into (14-74), the roots of the equation

. 3
—N o+ (2m—u)m+9i =0

that is,
A = Zwg —w Y (22:»0 — w)? 4 w?
determine A,

The most genetal solution is

A=A, M+ AP
and hence

B(I) - — w_zg—i(hn—m)l 0 1 gz".hr_'_) 4 ll)t_t)
T

This finally yields
d(l] - e-:'w EA+ e.l}.: + A eiJLJ)

B = = e A, P A )

(14-73)

(14-74)

(14-75)

(14-76)

(14-77)

(14-78)

(14-79)
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If at t = 0 the elecuron spin points in the positive z-direction, then a(n) = 1and
5(0) = 0, char is,
A+ A =1

NAy A =0
50 that

A = — — {14-80)

The probability that at some later time # the spin points in the negarive z-direction
is [B(n)|%: :

P

ML— eﬂm A-FL eil._r
U VA W
= "'—"“'"‘—"—wlg 1— f_i&+_k‘}' :
(2ws — ) + w®
_ ay? 1—cos V(2w — 0+ wlts
= G — ol & o > {14-81}

This quantity is small, since wy <K w, wp. When the frequency of the field B, is
“tuned” to match 2w, then the probability becomes

1 — Cos and#

{652 — (14-82)

that is, it approaches unity. Since the energy of the “up” stare is diffetent from
that of the “"down"" state, such an energy difference, absorbed from the exterpal
ficld, signals the resonance frequency, so chat we, and hence g can be measured
with great precision.

Problems

1. If the ground stace vector for the harmonic oscillator is given by



X
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use (142) and (14-10) to calculare s, &3, #s. What js che general pattern?
Satisfy yourself that

(#,Ii&} = Smn

2. Given a vector

—
D e D s

calculate with the harmonic oscillator opemtors (14-9), (14-10), {14-11) the
guancities * -

(=) ¢H).

(b} &), {x) {£*), (P)

(¢} Use this ro calculate Ap Ax,
[Note, The expression fot p and x in terms of A and A' are to be found in (7-4).]

3, Calculare the top lefr 4 x 4 corner of the martrix representation of x* for
the harmonic oscillator.

4. Use (14-20) and (14-21) to caiculate the matrix representation of L.,
Ly, and L, for angular momentum 3/2, Check that the commuration relations

L, L)=ML,

and so on are satisfied,

5. You are given the Hamiltcmiaﬂ

Ll 1 2
He=_ Li+ o L,.+ e

\I
Find the eigenvalues of H () when the angular momentum of the system is 1;
(b) when the angular momencum of the system is 2.
{Note. The matcix representations of L., L,, L. for angulec momentum 2 sre
obtainable from

|

=
L=l T N
=R =T = I
[= B =R~ =}
o oos
Mo S oo
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Li=#

oW oo

i

8 4 6
H=] 4 14 4
6 4 8

What are the cigenvectors?
7. Consider an angular momentum 1 system, cepresented by che srare

vector
o
4= —— :
Vs \

What is the probability that  measurement of L, yields the value 02

8. Consider a system of angular momentum 1: What ate the eigenfunc-
tions and eigenvalues of the operator L.L, + L,1.?

9. Consider 2 system of spin 1/2. What are the eigenvalues and cigen-
vectors of the operator S, + §,? Suppose a measurement of this opetator is
made, and the system is found to be in the stare corresponding to the larger
cigemvalue. What is the probability thar a measarement of S, yields #/22

*- 10. The equation for the rate of change of an operator in the Heisenberg
picture is given by Eq. (7-47). Coosider the operators 5.(#), . . . What ate the
equations of motion of these operators, if the Hamiltonian is given by

H="3g3n.B
2mec

and the commutation telativns are [543, 5,0} = #S5(), and 5o on. B =
{0,0,B), solve for 8() in terms of S(0).

11. A spin 1/2 object is in an eigenstate of $. with cigenvatue -+#/2 at
time 7 = 0. At that time it is placed in 2 magnetic field B = (0,0,B) in which it is
allowed to precess for a time T. At that instznt the magneric field is very rapidiy
rotared in the ydirection, so thav its components are {0,8,0). After another time
interval T a measutement of S, is carried out. What is the probability that the
value /2 will be found? : '

v
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12. Work out the behavior of a spin 1 particle in an external magnetic
field, Choose B = (0,0,B) and dake the initial stace to be an eigenstare of

Sn=58sinfcosd-+ S sindsing + S cosé

with eigenvalues £, 0, —# in succession.
[Hini. Use the matrix reptesenmations given by (14-27) o {14-24).]

References

The matetial on spin is standard, and discussions may be found in all of the
books listed at the end of this volume.
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The Addition of
Angular Momenta

Suppose we have two electrons, whose spins ate desaribed by the operators
8, and S,. Each of these sets of operators satisfies the standard angalar momen.
tum commutation relations
[Slﬂ'-l Slg] = "ﬁsl.l
and so on,
[S22, S20) = 7S5 (15-1)

and so on, but the two sets of operators commure with each other, since the
degrees of freedom associated with different particles are independent, thar is,

[51, 8] = 0 (15-2)
Let us now define the total spin § by
5=858,4+8, (15-3)

The commutation relations obeyed by the components of S are

(5.5 = [Si= + 51, S1u + Sal
= {510,594 + [Sae.52)
(S + S} = JAS, (15-4)

and 5o on. We are therefore justified in calling S the total sin. We may now
determine the eigenvalues and eigenfuncrions of 8% and S,
The two-spin syscem accnally has four staces. If we denote the spinor of
the first elecrren by x', so that
Six = 4G + 1) &Y
Sux = it {13-5)
243
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and similatly for the spinor X of the second elecuon, then the four states are

x DB @, o) _ {15-6)

The eigenvalues of §; for the four states are

SaxE = (S!z + %) ¥
(S zx(l) (Zh (I) {S-‘n&x

that is,
Sxm Q) _ ﬁxtl} 2)
5Py = zxmxrz) 0
Sax? = BN , (15-7)

Thete ate two states with m-value 0. One might expect that one linear combina-
tion of them will form an § = 1 stare, 1o form a miplet with the m = 1 and

m = —1 states, and the orthogonal combination will form a singlet § = 0 state.
To check this expectation, Jet us construct the Joweting opetator
§ =5+ 5 (15-8)

and apply this to the m = 1 state. This should give us the ® = 0 state that
belongs co the § = 1 tripler, aside from a coefficient i front. Indeed, using the
fact that

SO = Fy® . (159
which czn be estblished by noting that

€0 e

3 2
%D = GrxP) oF + xP8n?
= B 4 A ®
(L t2) + XU) {2)

= /2 5’.‘1"——\/5*__ (15-11)

wE get

The linear combination has been nommalized, and the compensating facror in
front, 4/ 2f, ageees with what one would expect from (10-36) and {(10-48) with
{ = m = 1. If we now apply 5. to chis linear combination, and note thae

$9,0 — ¢ {(15-12)
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we get
1
(1 (Z} I (I) 2y

X+ .
s Vg = "\7,_;(:(‘9)(‘3’ + x%x®)
= .‘/_ﬁxm 2y (15-13)

as we should, for an angular momentum state § = 1.
The remaining state, constructed to be orchogomal w0 (15-11) and properly
normalized, is

75 (82 — 1) (15-14)

and because it has no partners, we conjecture that it is an § = 0 state, In order to
check this, we compure S for the two states

Xy = 7 OGP = D) (15-1%)
We have .
8 = (8, + 8.2 = 8;* + 8 + 28.8;
=824+ 87 4+ 25,8, + S+ 55 (15-16)
First of all, ‘
82X, = % P8P & x§ S:‘x"’)
=R (15-17)
and similarly
82X, = WX, (15-18)
Next, we calculate
' 25uSX, = 2B)(— ) X, = —3PX, (15-16}
Finally}

(S48 + 51-501) X, = \/‘ (S8 a? + S x P

. ' + SI+XU)33—X(2) &+ S X“lsﬂ- (1})
which, with the help of (15-9) and (15-12) yields
o S5+ 5Se) XL = R2X, {15-20)
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Thus

I+
= BS54+ 1) X, (15-21)

with § = 1 and 0 corresponding vo the £ states.

What we have shown is that the totality of the four states of ewo spin 1/2
particles may be recombined into a triplet and into a singlet total spin seate,
For free spins, the ewo descriptions are completely equivaleat. If, however, we
have a physical system in which the forces depend on the spin, the eigenfunc.
tions of the individual spins are no longer simultancouns cigenfunctions of Hand,
say, 8., Sip Be%, S, but they may be simulraneons eigenfunctions of H 82, 5.,
8.2 and 8% This is most easily seen in an example,

If we have a porential berween two electrons that depends on the spin,
50 chat

2
Szxi=ﬁ’(%+§—§i1)xi=( )rﬂxi

4UERAG! + 51 - AL (15-22)

we can easily see thar S, and S, do not commute with the second term, so thar
the eigenstates of H conmining this potential cannot just be simple products of
eigenstates of Si; end $a.. If we obsetve, however, that

51:8; = 4(8* — §2 — 8§, (15-23)

5o that chis term can be replaced by the eigenvalue, when acting on an eigen-
function of 82, 8.2 and 8.7, then

Vi) = i) + % Valr) [S(S-*- 1) - %]

= Vitd + ( i ) Vit [;:) (15-29)

Such a spin-dependent potential is actually cbserved in the neutron.proten
system. The bound state isan § = L state—this is the denteron—but there is also
an unbound § = 0 state, which is only possible if ¥sfr) # 0.

Much mote important for future applications is the combination of a spin
with an orbial angular momentum. Since L depends on spatial coardinaces and
S does not, they commute

LSI=0 {15-25)
It is thetefore evident that the components of the total angular momentum J,

defined by _
J=L4+8§ (15-26)
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will satisfy the sngular momentum commutarion eelations, We can now ask for
linear combinations of the Yin and x4 that form eigenstates of

A=L+ 5 {15.27)
and
J*= (L' 4 2L-8 { 8%
= L2484 205 + L.S_+ LS, {15-28)

Let us consider the Linear combination

Vimtiz = aVimXe + BYippix- (15-29)

It is, by construction, an eigenfunction of J. with eigenvalue (m + }) £, We now
determine v and B such chac it is also an ¢igenfunction of J2. We shall make use
of the facr that

LiYi = M/ + 1) — mlm + )] RY, s
= [+ =+ 1}/ — mPERY;,
LY== m+ 1)+ =) RY,.
Sixe =S x-=0 Syxz = fixy : (15-30}
Then
J¥mtra= ol U+ 1) Yinw + 3¥0mxe + 20(3) Yok
F I — =T+ m+ DIV Vippux-} + SR+ 1) Yiwpix-
+ V0w tx- + 20w + 1(—3) Yigpix-
+{(/ — WU+ »+ D Yiex, ) {(15-31)
This will be of the form |
Wi + D dmirn = B + DiaYimx: + 8Yimuax)  (15-32)
provided that
A+ D+ 2+ w+ 80~ m+m+ )=+ 1)a
B+ D +i—m— 1}t —mli+at D=4+ 1)8
(15-33)
This requires. that
=+ m+ D=0+ 1)~ +1)-3— m
X+ -0+ D -F+m+1]
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which evideatly has two soluticns,

—1—1
G+ 1)—1(!+1)—%={ {15-34)
!
that s,
-4
j= (15-35)
I4+3

For f = l + 1/2, we get, aftec a little algebra

4+ m+ I—m
= N1 B‘\}z£+1 (15-36)
{Actually we just get the ratio; these are already normalized forms), Thus

4 w41 I—m
¥ iri/nmtrsz =\/‘—in-»3(+ + Jﬁ Yiwgix- (15-37)

We can guess that the § = / — 1/2 solution must have the form

I— m I+m+1
#’l—l/z;u-i—l,:’? = le_'l‘l‘_ Ylmx+ - sz—”—;—l—- YJ’,m-]—lx— (15-38)

in order to be orchogonal to the 7 = / + 1/2 solution,

These two examples illustrate the general featuees thar are involved in che
addition of angular momenta: If we have the eigenstates Y2, of Ly? and Ly, and
the eigenstates Y2, of L.?and Ly, then we can form (24 + 1) (2 + 1) product

wave functions
_!l S "y 11
Y Yia, (13-39)

—hEm< h
These may be classified by the eigenvalue of
Jo=Le+t Ly (15-40)

which is #2. -+ ., and which tanges from a maximum value of 4 + 4 down o
~—h — I As in the simple cases discussed above, different linear combinations of
functions with the same 2 value will belong co different values of 4, In the table
below we list the possible combinations for the special example of 4 = 4,
Iy = 2. We shall use the simple abbreviation (m;,m;) for Y, Yi2
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m-value #iy, g combinations number
13 {42) 1
3 4.1 3,2 2
4 4,0) (3,1) (2,2} 3
3 {4,—1) (3,0) (2,1) (1,2) 4
1 {3,—2) {2,—1) (1,0) (0,1} {—1,2} 5
0 {2,—2) (1,—1) {(0,0) (=—1,1) {—2,2) 5
-1 (1,—2) (0,—1) (—1,0) (—2,1) (—3,2) 5
-2 0,—2(—t,-1) (—2,0) (~3.1)(—4,2Y 5
-3 {(—1,-2 (—2,—1) (—3,0) (—4,1} 4
—4 (—2,—-2} (—3,~1) (—4,0) 3
-5 {(—3,—2} (—4,—1) 2
—6 {—4,—2) 1

There are a total of 45 combinations, consistent with (2, + 1) (24 + 1).
The highest state has total angular momentum 4 -+ / as can easily be
checked by applying J? to Yivid:

PYEYE = L+ L2 + 2LoLs, + Lo + LyLy) YOV
= B0+ 1) + Bl + 1) + 208 YYD

=Rh+ D+ &+ 1) YRYE (15-41)
This is ; = 6 in the example discussed in the table, Successive applications of
=L+ Ls (15-42)

will pick out gne linear combination from each 1ow in the table. These will form
the 13 states that belong to § = 6. When this is dope, there remains a single state
withw = 5, two withm = 4, ..., one withm = —5. It is extremely plausible,
and can, in fact, be checked, that the » = 5 stare belongs to 7/ = 5. Again
successive applications of J_ pick out enother linear combination from each row
in the table, forming 11 states that beleng to § = 5. Repetition of this pro-
cedure shows that we gee, after this, sets that belong to § = 4,5 = 3, and finally
j = 2. The muldplicities 2dd up to 45:

1B34+114+94+745=4d5

We shall not work cut the details of this decompesition, as it is beyona
the scope of this book. We merely state the results.

(a) The products Y2, Y2, can be decomposed into eigenstates of J*,
with eigenvalues #(§ + 1} A2, whete 7 can rake on the values

F=ht b b+ h— 1. .. hA— 4 {15-43)
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{b) It is possible to geaeralize (15-37) and (15-38} to give the Clebsch-
Gotdan series

Fim = E Clgm, homdory) Y, LY {15-44)

" The coefficients C{en; bumidammg) are known as Wigner coefficients, and have heen
tabulated for many values of the arguments. We shall use only the coefficients
for ; = 1/2, which we have calculated explicitly.

We can verify that the muldplicities check in (15-43): if we sum the
number of states we ger (f > i)

h+tH+0+Rh+E-O+10+.. .+ 200~ 8 +1)

*ix

S Rth—ht+m+1)

2h + D2h+ 1) (15-45)

A fina] comment is in order. We noted, when discussing idenrical parcicles,
that a system of two electrans (or more generzlly, two fermions) must be in a
state that is antisymmerric under the interchange of the two particles. This
interchange involves not only the exchange of the spatial coordinates, but also
of the spin labels. For a system of two identical spia 1/2 particles, the § = 1
triplet of states

1
x( )x(zil

\/_ (x:” X2 1 50y m} {15-46)
l)

is symmettic under spin label interchange, while the § = 6 (singler)

1
V3 xPx? - X {15-47)

is aptisymmetric. Thus for a triplet state, the spatial wave function muse be anti-
symmetric, and for a singlet state, it must be symmettic. The spatial wave
function of 2 two-particle system in their center of mass system is of the general
form

#(r) = Rulr) Yinl0#) (15-48)
An interchange of the coordinates of the two patticles is equivalent 1o the change

ror
g—x—4#

=+ {15-49)
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Thus the radial function remains unchanged. However under this transformation

Yimlltp) =+ Yo — 8, ¢ + =)
= (—1¥ Yinl8e} (15-50)

Thus triplet states must have odd orbital angular momentum /, and singlet states
must have even otbital angular momentum. We shall see an application of this
when we discass the states of helium.

An interesting application of these remarks occurs in elementary particle
physics. One of the first highly unstable elementary particles to be discovered
was the » meson predicted by Yukawa. This particle, which plays an impottant
role in nuclear forces, comes in three charge states rt, 2% 1. It was found to
have spin 0, and the question arose whether the wave fuaction of a pion—as this
meson came o be called—was even or odd under reflection, assuming that the
known particles, the proton and the newtron, had positive intrinsic patity. The
following expetiment was suggested.

Consider the caprure of a #~ by a deuteron. A slow pion in liquid deuterium
loses energy by a vasiety of mechanisms, till it finally ends up in the lowest Bohr
otbit about the {ps) nucleus, and is then captured through the action of the
auclear forces, In the nuclear reaction

m+d—onrntw

the angular momentum is 1; the pion has zero spin, the orbital angular momen-
tum is zefo in the lowest Bohr state, so that the only conttibution is the angulas
momentum of the deuteron, which is 1. The two neutrons muost therefore be in
an angular momentum 1 seate. If the total spin of the two neatrons is 0, then the
orbital angular momentum musc be 1. If the roral spin of the two-neutron state
is 1, then osbital angular momentum 0, 1, and 2 is possible, since adding two
angular momenta of cne unit each can yield 0, 1, and 2, and adding one unit to
two units of angular momentum can yield 3, 2, and 1. However a singlet state
of twa identical fermions must have even angular momentum, and is thus ex-
cluded. A wiplet state must have odd orbital angular momentum, and this is
possible if tke orbital angular momentum is 1. Such a scate, however, has odd
parity by (15-50}, and hence the pion must have odd pasity. In terms of the
SpeCIroscopic notarion, which we shall use, where a state is labeled according to

L, (15-31)
the two neutron states, from the total class of states 'S;, 'Py, 1Dy, 'F;, ., %%,
Py, 3P, P, 3D, 3D, 2D, BF,, 'Fs, W, . . ., ar¢ restricted to 50, Wy, ... , ¥Pe 1100
P31, ... by the Fermi-Ditac statistics argument, and of these there is only

: one state, the %Py, stave, that has angular momentum 1.
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Problems

1. Work out the generalization of (15-37) and {13-38) to the addition of
orbital angular momentum L to spin 1.

{a) Find the eigenstates of §7 and §, ,where

R
=40 0 o
6 0o -1

(b) If these eigenstates ate Jabeled &4, &, and &4, find the action of §,
and & on these SERLES.

{c) Calculate the effect of
IP=1'+8 4 2L.5 4+ L5 + LS,
on combinations like
Vw1 = a¥ubi + BY b + ¥ miafs
{d} Determine the relations between o, 8, and 4 obtained fiom
JU =R+ 1) ¥,

2. Find the analog of (15-46) for two spin 1 pamclcs which can combine
to form spin 2, 1, and 0 states. Use the pomation 5.,.,, fn . E( for the one-parricle
spin vectors.

3. A deuteron has spin 1. What are the possible spin and total angular
momentum staees of two deuterons in an arbitrary angular momenrum state L2
De not forget the Pauli principle.

4. A particle of spin 1 moves in a cenual potential of the form
Vi) = Vi(r) + 8-LVa(r) + (S-L)2Vs()
What are the values of V(¢) inthe states J= L+ 1, L,and L — 1?

5. Consider the discussion of the determination of the parity of the a—.
Suppose the x~ had spin 1, but was still caprured inan L = 0 orbital state in the
reaction

4+ d— 2n
Whar are the poss:ble two-neutron states? Which stares are allowed if the #— had
negative parity?
6. Suppose the v~ has spin 0 and negartive parity, but is captuted in the
Ieaction
w +d—2n
from the P orbir. Show that the two neutrons must be in a singlet state,
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7. The Hamiltonian of a spin system is given by

_ ES:-8: | C(3u + %)
H=A+ =5+ 7
Find the eigenvalues and eigenfuncticns of the system of two particies, {a} when
both particks have spin 1/2; {b) when one of the particles has spin 1/2 and the.
other has spin 1. Assume in (a) that the two particles are identical,

8. Consider twa spin 1/2 particles, whose spins are described by che
Pauli gperators 6) andés, Let & be the unir vector connecting the two particles
and define the operator

S1e = 3(d;-&)(dg- &) — 614y
Show thar if the two particles are in a § = 0 state (singlet) then
S1uXingler = 0
Show that fora triplet state
(512 — 2)(Sie + 4) Xpipter = 0

References
The matenial discussed hete is also discussed in one way or zoother in every
textbook on quantum mechanics. Many deaails can be found in

M. E. Rose, Elementary Theory of Anguiar Momeninm, John Wiley and Sons, Inc.,,
1957. :






chapter 16

Time Independent
Perturbation Theory

There are few potentials ¥(s) for which the Schridinger equation is
onactly solvable, and we have already discussed most of them. We must therefore
develop approximation techniques to obrain the eigenvalues and eigenfunciions
for poteatials that do not lead 1o exactly soluble equations, In this chapter we
discuss percurbation theory. We assume that we have found the eigenvalues and
the complete set of eigenfunctions for a Hamiltonian Hy,

. Hupy = E¢4 (16-1)
~ and we ask for the cigen\;alues and eigenfunctions for the Hamiltonian
| H= Hy+ A\, (16-2)
that is, for the solutions of
(Hy + M) ¥ = Edn (16-3)

We will exptess the desired quantities as power series in A, The question of con-
vergence of the series will not be discussed. Frequently one can show thac the
series cannot be convergent, and yer the first few terms, when A is smafl, do
properly describe the physical system. We will assume that as A — 0, B, — E,0

. Singe the ¢, form a complete set, we may expand s in 2 series involving
all the ¢&;. We write

¥ = NV {qbﬂ + ﬁg; Carl®) m} (16-4)

The factor N{A) is there to allow us to normalize the ¥&. We have the freedom o
choose the phase of Y., and we choose it such that the coefficient of % in the
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cxpansion is real and positive. Since we require that ¢, — @, as A — 0, we have

Np) =1
Co)=o0 (16-5)
More generally, we have
Car(h) = AC + 2R + .., (16-6)
and i
E, = ES 4B + NED + . (16-7)
The Schrodinger cquatidn then reads

(H: + Y {m + g. AN + ; MCDe, + .. }

= (B34 NP + NEP + .){«mt ‘);'hci?m+ énﬁ’¢. + .. }
(16-8}

Note that the normualization factor N(A} does not appear in this linear equation.
Idendfying powers of X yields e series of equations. The first one is

Ho 2 Clge + Hygo = ES 2 Gion + B, {16.9)
vy ) )
U.'il':l'lg Hepy = E\*: we obtain
E{$. = Hio + ‘Z (E° — EY Y {16-10)
_ s
If we now take a scalar product with gy, 20d use the orthonormality condition
@) = b (16-11)
we obtain
NEEY = (g |NHL @) {16.12)

+ This is a sery fmportant formuda. It states thar the first order energy shift fora given
state s jus the expectation value of the perturbing potentisl in that state. Tf the
changr in the potendial is of 2 definite sign, then the energy shift will have rhe
same sign. The explicit form of

NES — f % 2(e) NED(E) o) (16-13)

shows that for the shife to be significant, boch the potential change and the
probability density {e.(r)|? must be large.
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If we take the scalar product of (16-10) with ¢, for m 56 #, then
{@nlHijdn) + Ba® — EY CH = 0
that is,

NERERCALLATS)

ES — E0 2 (16-14)

The aumerzror is the matrix element of H, in the basis of states in which H, is

diagonal. This formula is used in the next equation, which comes from the
identification of termns proportional to A%:

Hna Ci?‘h + Hl;;. e
= E.°; C3 + B ;: CH + EP¢, (16-15)
[ e

Taking the scalar product with ¢, yields

2 _ o _ (| Hulda ) (e Fli| @)
a-gmwmm-g

E.! — B¢
H 2
=§%%%L [16:16)
The last line follows from the hermiticity of H,:
| Hildi) = (¢ Hj|¢)* (16-17)

This, 100, is a vety important formula, especially since the firse order shift fre-
quently vanishes on grounds of symmetry, We may interpret the formula as
follows: tke second arder energy shift is the sum of tezms, whose strength is
given by the square of the matix element connecting the given state ¢, to ]l
other stites by the perturbing potential, weighted by the reciprocal of the
enezgy difference between the stares. We can dmw several conclusions from the
formmla,

(a) If &y is the ground stae, that is, the stae of lowest energy, then the
denominator in the sum js always negutive, snd hence (16-16) is always pegative,

(b} All other things being equal, that is, if all the matrix elements of Hy

]

R

are of roughly the same order of magnitude (which is the kind of guess one -

would make without more specific knowledge), then aearby levels have 4 bigger
effect on the second order energy shift than distant ones have.

{c) If an imponant level "'&”—important in the sense of lying nearby, or
of {¢a| Hy|¢.) being larpe—lies above the given level “'n," then the second order
shift is downwards; if it Les below, the shift js npward. We speak of this as a
tendency of levels to repel each other.

‘ An expression for Cff may be obrained from (16-15) by wking the scalar
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product with ¢, # = », but we shall nor require this formula. Also N(A) can be
determined from

]

Wnlda) = NPV [1 R T (Gl ]

=1 (15-18)
It is therefore 1 to Arst order in X, Hence, to fitst order in X, we may write

wl ' ’
da =+ & H% (1619}

a formula that is sometimes uscful.

The above development needs modification when there is degeneracy,
since, on the face of it, the denominator involving energy differences could
vanish. The difficulty is associzted with the fact chat, instead of a unique ¢,,
there is a finite set of &, all of which have the same energy E.2. This set can be
made orthonotmal with tespect to the label “'i,” because, 25 we have seen in
Chapter 4 rthis label can be associgted with the eigenvalues of some other,
simultaneously commauting, heimitian operators. We thus choose the set of ¢
such that

The natural way 1o wke the degeneracy into account is to replace (16-4)

by an expression that involves linear combinations of the degenerate eigen-
fenctions of Ho:

Yo = N {; i) + ) ;ﬂ e E‘ Gl + .. l (16-21)

The coefiicients oy, 8;, . . . will have to be determined. When the above is sub-
stituted into che Schetdinger equation {16-3), we get, 1o first order in A,

Hy Z; c® Z Bitf? + H. Y awgl®

=B a4 B0 Y CO X bl (522)
£ v i
Taking the scalar product with ¢ gives the fiest order shift cquation

2 aildP M9 = REY oy (16-23)

i

This is a fivite-dimensionsal eigenvalue problem. For example, if there is a two-
fold degeneracy, and if we use the notation

@9 | Hhiod) = hy ' (16-24)
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this equation reads
hnay + hygor = EX oy
ho1c + hozas = E8? g (16-25)

Both the cigenvalues—chere will, in geaetal, be two passible values of EP—and
the a;, can be determined from this equarion, if we add the condition that

2 oe|t=1 (16-26)
[

We do not bgther with the determination of the 8, since we shall only use
degenerate perturbation theory for the fitst order energy eigenvalues in our
applications. If ic 50 happens that h;; = 0 for / 5 , cthat is, that the matfix A;; is
diagonal, then the first order shifts are just the diagonal elements of this matrix.
This will happen when the perturbation H, commutes wich the operator whose
eigenvelues the 7" labels tepresent. For example, in the hydtogen atom, there is
a degeneracy associated with the eigenvalues of I, that is, all m-valucs have the
same energy. If it happens thae

H,L]=0 (16-27)

and if we choose our ¢ 1o be eigenfunctions of L,, then J;; will be diagonal.
To see this, note chat with

Lo® = fim'Bpt (16-28)
@ L) = @ HL. — LHje)
= K(m” — o hy
=0 (16-29)
that is, (16-27) implies
hij=0 for = xp® {16-30)

Some of chese feztures will be illustrated in the example below; others will
appear later in onr discussion of the real hydrogen atom.

To dllustrate the application of pesturbation theory to a real problem, we
will consider the effect of an external electric field on the enetgy levels of a
hydrogenlike atom. This is the Staré Effect. The unperturbed hamiltonian is

p_ 2
Hy=+— - 2 16-31
= T (16-31)
whose eigenfunctions we denote by #urm(r). The perturbing potentia] is
Mi=¢&-v=¢8z {16-32)

" where £ is the electric ficld. The quantity ¢& will play the role of the parametet A,
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The energy shift of the ground state, which is nondegenerate, is given by the
expression

= Elbion| | droe) = ¢ Sfdafmwo(f);_! z (16-33)

This integral vanishes, since the square of the wave function is alwiys an even
function under parity, and che pereurbing porential is an odd funcrion under
reflections. Thus for the ground state chefe is no energy shift that is linear in the
electric field &. Classically, a system that has an elecric dipole momenc d, will
experience an energy shift of magnitude —d- €. Thus the atom, in its ground
state, has no permanent dipole moment, The argument given above may be
genetalized: rynems in nondegenerase states canner have permament dipole momants.
The statement of nondegeneracy is impontagt: it is only then that the states are
also eigenstates of the parity operator, and then |¢(r) |? is even, and the expecta-
tion value of 2 vanishes.

Many molecules do have permanent dipole moments, and it is often said
that this is because the ground states are degenerate. The expectation value of z
in a state like oaby + S¥, where the subscripes indicare the pariry, certainly does
not vanish, and a state like the abave will he degenerate with its space-inverted
state anfy — S if the two states ¥4, ¢ have the same epergy. This explanation
1s not quitc cotrect. The reason is that the lowest-lying states are never quite
degenerate. Consider, for exemple, 2 molecule like ammonia, WH,. [ts strucoune
is retrahedral, with the three H nuclei forming an equilateral triangle. The N can
be at 2 position (determined by the condition that the egergy is minimum) eicher
“abowve” or “betow’" the tiangle, The even and odd lincar combinations of these
two states do not have quite the same energy, though the energy difference is
very tiny (—10~* €V), because of the large barrier berween the “above™ and .
“below” locations.! Thaus, strictly speaking, the ground stare is nondegenerate.
However, if &4, where

od = ef#:bme zi’abm = '_e[*;elon Z"x’l:velr:mr (16'3‘1)

is much larger than the tiny splitting, then rhe energy Shlft will be linear in the
electric field, and the molecule will behave as if it had an electric dipole moment
(cf. Eq.-16-64).

Let us look at the second-order term. It seads

2
. E@ = eﬁsgz l(‘ﬁ;l:izlgm:ﬂ (16-35)
. 1 == En

The mattix element in chis expression is
(i | 2| Pr00 ) = fdaf Ruzu{t) J.mg &) + cos 6 Ko (r) Yun{a,!ﬁ) (16-36)

1 8ee gur simple modc! of a molecule, and the discussion on p. 58.
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where we have replaced 2 (which appears with & pointing in the z-direction) by
the more convenient r cos 6. The angular part of the integration can be carried
oue, since

1

Yoo = ——
b A 4
cos b = %" Yo (16-37)
It is therefore
1 1
dQ Vi (0.0) ~—= Yi(f,8) = — & 16-
f m{8.5) V3 10(8,4) 3 100 | {16-38)

by the orthonormalicy of the Y.
The fact that the si-value must be the same for the two states is our first
example of 2 selection rule, which can be srared in the form

Am=10 (16-39)
It follows from the facr that
' [z} = 0 (16-40)
thar is, that the perturbadon commures with Z,. One thus has to evaluate the '
radial integral to obtain the answer:

R = f:ﬂ dr Rﬂln(f) ¥ Rlnn(f) (16—41)

This can be done,? and the result is
) 1 28”?(” — 1)=n—ﬁ
{ (o] 2| Proo}|? = EW

which we write as f(#) 4". For the second order shift, this gives

dns (16-42)

e W
P ey

_ 28w’ y\: n’fir) _

P e |

Eig

o nz )
= —2a0%8% 3, ‘f”,i’% (16-43)
’ b} - i

25ec H. A. Bethe and E. E. Salpeter, Quanizm Mechanics of Ome- and Tuwe-Blagron
Arosmr, Academic Press, New. York, 1957, p. 262,
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On the face of it, the sum can only be evaluated term by rerm ! The
#n = 2 tetm contribuces 0.74 to the seris, and the # = 3 term contributes 0.10.
The convergence is not spectacularly mapid, and the sum acually adds up to
1.125. The fiest term in che series does, howevet, give us an estimate of the order
of magricude of the effect, The dependence on a4 is, of course, aAutomatic, on
purely dimensional grounds. The factor 8 must be multiplied by something that
is a (length)?, and the only narural length is the Bobr radius. If we speak of 2
hydtogenlike atom, rather than hydrogen, we must make the substitution
do— ayf Z.
If we differentiate the energy shift with respect o the electric field, we get
an expression for che dipole moment
(2) 2
d=— —b?‘” = 48;::;3; ;—{—_(”—)1 {16-44)

This is proportional to the electric field strength, that is, the dipole moment is

induced. The polarizability, defined by
d

P="— -
P (16-43)

can thus be calculated,
In making estimates of sums of cthe sort that eccur in (16-35), one mzy
sometimes find useful upper bounds. Fot example

(o0 | Bt ) {@atm| 2| a0}
; Eigo — E.*

o 1
P : 16-46)
< |50 — By é 10| 2 nte } Dutm| 2|10} (
Howevet, because of the completeness of the states, we may replace
; | $otra} {Pataa| — 1 (16-47)

as argued in (14-17), so that
; (¢|m|2|¢ﬁ1,.}(¢'jm|z!¢m) = {lﬁmlz’i!#m} {16'48}

This, however, is casy 10 evaluate. Since the ground state wave Function is
spherically symmeic, we have

@) = (2= O = Gultibmi= et (1649)

* Actually the second order shift can be evaluared in closed form. See, for example,
5. Borowirz, Fumd: tals of Quanspsn Mechanice, W. A, Benjamin, New York, 1968, -
A28-330,
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: whete the last step follows from {12-31), From this we find that

é fmy =1 {16-50)

and therefore
g ;’;@L < g' g fln} = g (16-51)

The relation
2 | iial 2|60} * = (G1oa]2%| duc) (16-32)

i8 called a sum rule, and is an example of relations that are useful in making
estimates. .

To illustrate degenerate perturbation theory, we calculate the first order
(linear in &) Stark effecc for the # = 2 stetes of the hydrogen atom. For the
unperturbed system thete are really four w = 2 states that have the same encrgy.
These are

e = (230)_5” 2 (1 — é) e—"fl’at Y
a1 = (2a0)%2 37112 ( ..L) ey,
ay
dai = (2aq) %2 312 (L) sy,
&

S21,1 = (200)7%% 312 (é) Y (1653}

The { = 0O state has even parity, and the / = 1 smtes have odd parity. We want to
solve &n equation like (16-23) and, on the face of it, four equations ere involved.
If we note, however, that (a) the perturbing potential (that is, z) commutes with
L, so that it only connects states with the same m-value, and (b) parity forces
us o considet only terms in which the perturbing potential must connect
! =10 != 0 tetms, that is,

{¢2,1,=|:1 ‘4&2,1,;&1 ) =0 (16-54}

then the macrix in (16-23) is only a 2 X 2 martix, The equation reads

: ( (¢5ﬂ|3|¢m} {¢m|2f¢sm) )( oy ) ( (3] )
<& = E® ) {16-55)
“{#a10] 2| o } (ﬁmizi@m} ooz s
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The diagonal elements ate zero, because of parity, and the off-diagonal elements
are equal, since they are complex conjugates of each othet, and each may be
chosen to be real. We have

(CANEI LT =f0 Pdr(2agyte”"™ 'v%ae (1 - _"_) ;

261:}

. f d2Y00 (v 4x/3 Yoo) Yoo ' (16-56)

= —3ay
and hence (16-55) becomes

—E Koy &
=0 (16-57)
—3¢fgqy —E s

The eigenvalues of this ere
EW = +306a, (16:38)

and the corresponding eigenstates, when properly notmalized are

vilo1) = 5(0)

‘\/E -1 an \/E )
respectively. Thus the linear Stark effect for the » = 2 smtes yields a splicting of
degenerare levels as shown in Fig, 16.1.

Thete are some general comments that can be absttzcted from the calcula-
uons just concluded.

(a) The states in the presence of the electric field are no longer eigenstates
of L? since in the above case, far example, we found that the states thar di-
agonalize the perturberion wese equal mixtures of / = Qand / = 1, though they
are still eigenstates of L, The reason, is that the pestatbation changes the
Hamiltonian, so that it no longer commutes with L2 This can be worked out in
detail, but it is really evident that the external field specifies a preferred direction,
so that the physical syseem is no longer invariant under arbitrary rotations. It is
still invarizat under rotarions abour the prefetred axis, hete the z-direction, and
hence L, is still a good constant of the motion.

{b) Quire generelly, whenever there is a perturbation that does not con-
serve some quanrity (for example, L hete), then the states that ““diagonalize”
the new Hamiltonian in any approximation, ate supetpositions of states with
different values of the previously ronserved quantum numbe:s end thus de-
geneate levels will be split.
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Fig. 16-1. Pattern of Statk splitting of bydtogen atom in # = 2 srate. The four-
fold degeneracy is party Eifted by the percusbation. The = = 41 stetes remain
degenerate and are not shifted in the Stark effect.

(c}) We may summatize the procedure in degenerate perturbation theory
in mattix language as follows, [f Hy is diagonal, but H, is not, then, since H, and
H, do not commaute, it is not possible to diagonalize H, by itself, withont
"un-diagonalizing” Hy. One mmst work with

H=Hy+ H,

as a whole, If we work with a subset of degenerate states, all of which are ejgen-
staves of Hy with the same eigenvalne, then, us far as these states ate concemned, i,
is not merely diagonal, but it is proporional to the unit matrix. Since H, (and
everything else) commutes with the unit matrix, one may diagonalize H, by
- itself, withour affecting Hy.

The hydrogenlike atoms considered here wete somewhat idealized. As we
will sec in Chapter 17, these are smull selativistic and spin-orbit coupling effects
that actually temove some of the degeneracies. Does this mean chat we never
reslly need to use degenerate perrarhation theory? Actually, even if, sy, day and
#1190 do not have exactly the same energy, it may still be sensible to take some
linear combination of them in the perturbation expamsion. If we have, fot
example

Hy gue = (Ea® — A) ¢
Hy gaw = (Es® + A} dono {16-59)

with A small, then the Schridinger equation, with the linear combinations, reads
{Hy + M) { oo + cespzio + N D C,.!#..)
aml

=E (mm. + o + A gz c,.¢.) {16-60)
A
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Taking che scalar product with dsm and g, respectively, leads to the following
equation to order A: '

(Ezo-— A — {0 AH1| bam } {$so0| AH1 2o} ) (al) (m)
=E
<¢m|7\H1|¢:m} E* + A — (oo i1 ) o2 o

{16-61)
If we write :
(s WH) [} = {Buia| AF1 | dage} = b (16-62)
we must find che eigenvalues of the matrix
( Ef—A M )
{1663}
Na Ef 4 A
and these are .
E= B Vot + a2 | (16-64)

{In the above we have set {soo| H|dm} = (ol Hifduio} = 0.) We sce thac
when A 3> 4}, we get & “quadratic” effect only. This correspands to no de-
generacy, When A < a2k we get the result of the form (16-58). In the inter-
mediate region, the above, more careful treatment is necessary. Furthermore,
when the new linear combinations are used, then in second order pertutbation
theory there no longer appesr very tiny energy differences in the denomicators.
We do not discuss this in derail, bar this is not difficult to establish,

As a.fisal commeat we point our two apparently contradictory facts,
(1) The predictions of perturbetion theary concerning the Stark effect are borne
out very well by expetiment, and (2) the perturbation series evidendy diverges,
since the pertutbing potential ¢8z grows without bound as z becomes very
latge, no matter how small £€ is. The question arises whether one has any right
10 believe in the accutacy of the fist few terms of & mathematically divergent
seties, since it is well known that 2 mathematically divergent series can be
rearranged to give eatirely different expansions. The answer lies in the physics
&nd not in the mathematics of the problem. The teason for the divergence can be
seen in Fig. 16-2, which gives a rough picture of the total potential for x, y fixed.
Ik appeats that there is a basier creared for the bound electron, This barrier is
ultimately penetrable, even though for small ¢€ it is very broad. What the marhe-
matical divergence of the series is tesponding to is the possibility char the elec-
won in the ground state, far example, has 2 finice (although very, very small)
probability of being sufficieady far away from the nucleus, where the external
electric field is stronger than the Conlomb ficld, and the electron is carried away
by the elecric field. Thus the new “‘shifted” energy levels of the hydrogen atom
ate 0o longer stationary states, but rather metastable states. If the field is weak,
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R

Effactive
potential

q’_’ﬁ‘\\ e?

] Py

Pig. 16-2. Schematic picrure of pocentizl enegy as a Fanction of z with x and ¥
beld fixed. The dotted line tepresents the Coulomb porential, the dashed line rthe
potential energy due 1o the extetnal field, and the solid line the vowl pocential,

however, they may be stable on 2 time scale of the age of the universe, and hence
the observations agree perfectly with what the first few terms of the perturbation
series predict.

Problems

L. Consider the hydrogen arom, and assume that the proton, instead of
being a poinc-soutce of the Coulomb feld, is a unifomnly charged sphere of
fadius R, so that the Coulomb potential is now modified to

3¢t 1
Vir) = — R (R’-gr’) r < R{<ay)
ot
= - — r> R
r .

Calculate the energy shifr for the n = 1, § = 0 state, and for the n = 2 states,
caused by this modification, using the wave functions given in (£2-2%).

* Acoudlly a simple barrier penetcation calculation of cthe type carried our in Chapeer 5
shows that the time scale is more Iike 109 liferimes of the universe, far faitly reasonable

' Relds!
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2. Calculate the energy shift in the ground stace of the one-dimensional
batmonic oscillaror, when the perturbacion

V=xt
is added to
1
H o= — o Lt
m

3. Consider a square well in one dimension, If the edges of the well are
rounded off as shown in the figure, what is the change in the ground state energy?

Choose your rounding-off paramertization such rhat Fix) dx remains un-

changed, -
-~
A\ J

4. The bottom of an infinite well is changed to have the shape

V(x)=.sin’%‘ 0<x<h

Calculate the energy shifts for all the excited states to first order in ¢ Note that
the wall originally had ¥{x) = 0for 0 € x < b, with I = o elsewhere.
5. Prove the sum rule (Thomas-Reiche-Kuhn sum rule)
B

g (., — B {rlxla)]® = - —

[Hint. (2) Write the commutation relation [p,x] = #/7 in the form

i ﬁ
% (b mitrisla) ~ Gtz = £ oy = %
(b) Use the fact thar

Glolar = (alm 2 n) = m 5 eliHLAm)

in working out the problem.]

6. Check the above sum rule for the one-dimensiopal barmonic oscillator,
with """ taken in the ground stare.

7. Work out the first order Seatk effect in the # = 3'state of the hydrogen
atom. Do not bother ro work out all the integrals.

B. Consider an electron in a state w in 2 hydrogen atom, The arom is placed

-
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in an externs] electric field & Estimate the lifetime of the atom, o«, equivaleatly,
the eransmission coefficient through the barrier made up of the Colulomb attrac-
tion to the nucleus. Tt is enough to consider a one-dimensional model of the
problem.

~ 9, Copsider & two-dimensional harmonic oscillator described by the
Hamiltonian

1
= 5o (8 2D + dmlet + )

Generalize the approach of Chaprer 7 to obtain solurions of chis problem in terms
of raising operators acting on the ground state. Calculare the energy shifts due to
the percurbation
V = 2hxy

in the graund state, and in the degenerate first excited states, using firs¢ order
percurbation theory. Can you interpeet your fesult very simply? Solve the problem
exactly, and compare it with a second order perturbation calculation.

[Hints. (2) Fxamine the symmetties of the unperturbed Hamiltonian, (b} De-
compose the moticn into center of mass motion and inrernal motion. ]

References

There are many examples of che application of firse-order, perturbation theory
in the textbook Jitemture, and che references listed at the end of this book may
" serve as a source of further examples. For a discussion of the evacr calculation
of the Stark effect see

- 8. Borowitz, Fundamentals of Quantum Mechanics, W. A. Benjamin, Inc., 1967,







chapter 17

The Red Hydrogen Atom

The discussion of hydregenlike atoms in Chapter 12 was based on the
Hamiltonian

b4 Zk
e E_Z

” . (171}

" In a mofe realistic treatment, several cotrections must be raken into account,
First of all, the gxpression for the kinetic enesgy of the electron is altered when
telativistic corréctions are taken into account. In the original electron-proton
Hamiltonian we replace

| TN Dl ,(J__ L)_L’
2m+2M_p im | IM T 2

(m the center of mass frame) by

ey oaaye  BP o~ P L @ P
(o 4wt e St T T8 e T oM
1 EiY]
= me? +£ — 8—% {17-2)

The electron rest mass term is irtelevant. The nonrelativistic reom still involves
the reduced mass, but there is pow a comection term,
1 (p%)?

H=— -
! -8 mi?

A{17-3)

that should be added to the Hamiltonian Ho. We may estimate the magnitude of
the comrection:

H.) ] Fe)?

o _ . 271
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For hydrogen this is of the order of 10-%, smaller than the rednced mass effeces.

- The existence of the electron spin gives rise ta another correction that is of
the same order of magnitude. It may be qualitatively understood as follows:
if the electron were at rest relative to the proton {we atc discussing this on a
classical level), it would only see aa electric field due to the proton charge. This
is the Coulomb potential term that appears in By, Because the electron is moving,
there are additional effects. In the clectron rest frame, the proton is moving, so
that thete is 2 current present, and the electron “sees™ a magoetic field. If the
relative maotion were rectilinear, the magnetic field, as seen by the eleceron,
wonld be v X E/r. This magnetic field interacts with the spin of the electron,
of more precisely, with the magnetic momenct of the electron. We might expect
an interaction of the form

—-M-B

‘sB
ne
£

a2 S P X V()

£
ESIVKE: —_

¢ 1 do
= paSPXr
1 1 J
- St - — 1 -
o TR alr) (17-3)
where ¢(r) is the potential due to the nuclear charge. Acmally this is not correct.
It turns out that relativistic effects associated with the fact that the elecoon does
not move in & smaight line (the Thomas precession effect) reduce the above bya
faccor of 2. Thus the correce perturbation is

RUBERY %)
2m%" S-L r @

Let us now use first order petturbation theory to calcudate the effects of H,
and H; on the specirum of hydrogenlike 2toms. We may rewrite &, in the form

R )]

HS_

(17-6)

8 mit T ome 2;
. 3
S (Ho + z—ez)(Hn + Zi) (17.7)
mi r r

if we neglect reduced mass effects in Hy.

Hence

i
(%im|HlI%tn} = — z—m“?! <¢Mm

(2o + o
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- E%B[E.’ + 2E.Z¢ {%)ﬂ + (2 (%)-J

_ 1 [mc’(Za)’]’ _aza mi(Zer)? (i)
2mct _ 2nt 2t don®

+ {Z 3)! __—Zz........I
© a4 1/2),
_ .1 . (Zo)* 32w} )
T2 m{Za) [u“(i +1/2) 4nt ] (17-8)

In calculating the above, we have used expressions for

(o= ol fme) i G, o] o)

from (12-31). The spin of the electron does not enter into this energy shift, since
H does not depend on the spin, H; does depend on che spin, and for our un-
pmu.rbed wave functions we must take two-component wave fuactions, since
" what we want 1o calculate is the expectation value of

" 1 1 Z# 1
1 edplr) 28 1L

L—
2mict 5 r dr 2t ol

(17-9)

o H.ere again, we have an example of degenerate perturbation theory. For a given
 # and J, there are 2(20 4 1) degenmtc eigenstates of Hp, with the additional
- factor of 2 coming from. che two spin states. Thus the calculation of the energy
_shift involves a diagonalization of a submarrix, as in Eq. 16-23. We can save
purselves a great deal of Jabor by noting thar

S+L=] {17-10}
unphes that
S+ 8L+ L= I
that is,
CSL=3(-L'-8) - (17-1L)

“Thus if we combine the degenerate eigenfunctions into linear combinations that
ste eipenfunctions of J? {they already are eigenfunctions of . = L, 4 §), then
these linear combinations will diagonalize Ha. The appropriate linear combinz-
tions wete obtzined in Chapter 15, Eq. 15-37 and 15-38. With these lineat
combinations we have

1 ' :
SLéditam ~ 3 (I’ — L= S’) Yt

sy (142 aiprm (172}
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- # [(“f i) (“f 3) - At - ﬂ butram
= ;;w &{;,ji*.;‘i’?l}z, _ ' (17-12)
and
L (O O S o,
I D a7

. FPora given / value there are ¢+ 1/2) + 1] + [2¢/ — 1/2) - 1] starcs. Whar
has happened is thar the degenetate stares have metely been rearmanged, bur the
tW0 groups that they have been split into behave differently under the action
of Hy, If we call the linear combinations @52 then

Bins| Faldymg) = 2 B2 { d f

2t 2 |—)—
X f :dr PIR,{r)]? {; (17.14)
fotj = {4 1/2, respectively,
With the help of
1 zs 1
)= Emrrimres w713
we get the energy shift
{
[—f— l] (17-16)

I
E=- [ Y S
N N T 0
We must, of course combine the effects of Hj and H,,
Phen this §s done, we obtain after some algebrs

11 .1 3
AE = -—lf?mt’{&]';[m ‘—.; (1.7-17)

for both values of / = 7£1/2. 1t is necessary to work with the relativistic
 Dinac €quation to show thas the tesult is also cortect when 7 = 0, even though
the product in {(17-14) is nor well defined, :

The splitting is depicred graphically in Fig, 17-1. A very inceresting result is thar -
the cofrections add uPp in 3 manner that leaves the Py, and the 5,,, srates
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Fig. 17-1. Spliing of the = = 2 levels by (1) the spin-orbit conpling (which
leaves the § state unaffected) and (2) the relativistic effece. The final degeneracy of the
25,0 and *Py,; states is ectually lifted by quanmen elecrodynamic effects, The upward
shift of the 25, 2 state is called the Lumb shift.

degenerate. A more careful discussion, using the relativistic Dirac equation, does

not alier this result. Tn 1947, a very delicate mictowave absorption experiment

 camied out by Lamb and Retherford showed that there was, indeed, a tiny

splitting of the two levels, The magnitude of the splitting, of order

(2o} o log o could be explained by the additional interaction of the electron

+%  with its own electromagoetic field, that is, as a self-energy effect. These marters
are outside of the scope of this book.

_ Let us now tumn ta the discussion of the behavior of hydrogenlike atoms
jn an external magneuc field, that is, to the anomalons Zesman effect. There is, of
course, nothing anomalous about the effect; it is just that the Zzeman effect

that could be explained classically was exhibited only by atoms in states in
which the total electronic spin was zero, Far che other states, for which chere
was no classical explapation (since that invelves spin), the Zeeman splitting
pattera was diffetent, and therefore “znomalous.”
For the unperturbed Hamiltonian we take the usual Hy together with che
spin orbir cerm. The reason for doing this is that the external perturbation may
be small compared with the effect of what we called Hy. Thus

Ly, 1z

H, . -
= = o g LS (17-18)

The perturbation now reads
£
H‘ = L+ 25)-3 {17-19)

The first-tetm is, in effect, the interaction of the magnetic dipole moment arising
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fiom the circulating charge, and the second term is the contribution of the
intrinsic dipole moment of an object with spin

M= _ ﬁ S (17-20)

with g = 2,

- The choice of Hy dictates that we calculate the expectation value of the
perturbacion in eigenstates of J* and Ji (15-37) and (15-38). If we choase the
2-axis as given by the ditection of B, then we need to calculate

eB ol \
| g L+ 29010000) = G| 2 (L + D 6100)

¢B
= 2 B+ Gyl Sl 05,))  (17-22)

To caleulate the st matrix element, we mry out the calculation explicity,
using the eigenfunctions given in (15-37) and {15-38}. Thus forj = / 4 1/2
we have

I+m+1 I— It 41
(J——ﬂ——— Yimxe + \/ﬂﬂ:— Yimt1x— ‘&'J*—tﬁ— Yimxs

241 2+

I—m fifl4+m41 I —m

+'\) 7+1 Y;,..+1x.>—?( a+1 2}+1)
ﬁ2m+1 ﬁﬂl;

T2 A+ 241

{—m
_.___Y»
3"‘\]2!+1 Xt

(17-22)

and for f = —1/2, we have

I—m _ et
O o et

_ Pt e+ )__ﬁ_(!-e-m 1+m+1)
ol f 1 kmix-j = 2\z2l+1 {1

' i2m+t1 fams;

T T A+ T T uFi

(17-23)

In both cases we used the face that mi = m -+ t/2 in the above, Inserring the
above into (17-21) yields '

B (
AE = —— g1 &
2Zmic

ﬂl_‘_ 1) F=lx} (17-24)
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Fig- 17-2. Genetal represcnration of anomalous Zeeman effect.

The splitting is depicted in Fig. 17-2. The sclection rule! for the eransitions
is still
Am; = £1,0 ' {17-25)

bu since the splitting becween the lines is not the same for every multiplee, we
do ot get just the thiee lines that we obtained for the normal Zeeman effect in
Chaprer 13. For example, for n = 2, the *Py; state splits into four lines, with the

itting ewo times as large as that of the two states i the Py lines (Fig. 17-3).
I the external field is very sttong, so that the spin-orbit coupling can be ne-
glecred, we may use the ordinary hydrogenic wave functions simply multiplied
by spinors, thar is, eigenstates of L2, L,, S, and §,. If we call the eigenvalues of
L. and 5., m; and m,, respectively, then the expectation value of H, in {17-19),
- with B pointing in the z-direcrion, is

{(Hh} = %}E (mp + 2m;) {17-26)

Thus the 5 = 2, { = 1 states ate split into five levels, corresponding t¢ che values
“ofm=1,0—1;m = 1/2, —1/2.

In addition to the fine struciure of the levels caused by the spin-orhit
coupling, there is a very tiny hypsrfine splitting, which is really 2 permanent
Zéeman effect due to the magnetic field generated by the magnetic dipole
moment of the aucleus. If the spic. of the nucleus is 1, then the magnetic dipole
moment OpErator is

Zegn

= — I -
T {17-27)

where Ze is the chatge of the nuclens, My its mass, and gy its gyromagnetic

v ) s The derivation of this selection rule (snd others) will be discussed in Chaprer 22.

e
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Fig. 17-3. Zeemsn effect in hydtogen, « represents the emrgy ehB/2mc, The
wansitions for which A/ = I, 4m = 1, 6, —1 are drawn in the figate, The location
of the unpercurbed states is given by Fip, 171, . :

tatio. The vector potentisl due to & point dipole is, from electromagnetic theory

1 1
A= - — M x v — (17-28)
4y r o ]
5¢ that the magaetic field is
- 1 1 1 -
B=va=——-1‘1w-—+~+v(M—v)—~ (17-29)
4w y ix r
Thus the perturbation is
H_] = —M"B
= Z8.B
®iC -

I

Zegy 1 1 1 :
s> —g. |l L ey L .
ZmMNc“iqu [ " + vl-v) r] (17-30)
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The expectacion value of the term on the right can be calculated very straight-
" forwardly. First, we note that the magnitude of the splitting is

Zlgw (Zamc)‘ . g~ ( m ) )
——8 (=) o (Za)t | ) 17-31
SamMpc? ] 81( ) My me (17-31)

that is, it is a factor of m/ My snialler than the typical spin-orbit splittings. ‘The
ealculation of the expecwtion value of (17-30) in the state characrerized by
! = 0, for example, the ground state, is simplified. We have

| f d’m*{rJ((S-‘v)(I—v) lr) () = Sl f P (0 5 :7 -

Because of the spherical symmetry of all the temms in the integrand except for
- the derivatives, the angular iavegration will vanish unless / = & All the /i = &
contributions will be equat for the same reason, so that the above yietds

L sl aigl (1w =
3 r

Thus, when inserted between { = D states {and only then), we may wrice

1 1 L1
(SV)(IV) T = 55'1?2 T (1?_32)
_ Thus what is needed is
- 2-Zegy < 1 )
H)=—- — {51 — .
o 2dxmMyc® S-DAv r (17-33)
We use the fact thar?
1
7 — = — 3(r) (17-34)
dqr

1o obtain
ST 3 .
_{ff.}=§g»t2a) pr mﬂ(ﬁ,)( ) f Prtreo(x) 5(8) GraokT)
$.1/%\*
= ‘%L (Za) m“? (—) i Rnof0] |2 (17-35)

¥ Oﬂly the radie] part of V% is relevant. To show this, we prove that {1/+%(d/dr)
[P2{dfdw)} (2/¥) = 0 for r # O, and that ¥(1/7} integrated over 2 small sphere of radivs
gives s result —4x independent of o
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When the value of the radial funcrion at the origin is inserted into the above,
then?

4 {Zamc\?
| Real0) | ? = — ( mc) (17-38)
" E
leads to the result _ '
1 @ 1 {S1
—_——. il [ Bl Rt _
(H1) ™ (Ze )t mc - (ﬁz) (17-37)

If we take the ol spin of the electron and nudleus to be F,

F=8+1 ' (17-38)
then
SI F-$-T [FF+1)—3/4—I(+1)]
[ 2kt N 2
_1¢ F=1I+413} '
-2{—;'—1 F=1-1 (17-39)

For hydrogen, gv = gp 22 5.56, and the energy difference berween the exciced
state, characretized by F = 1 and the ground swte of F = 0 is .

=§(5.56)—-I— L (me?)

1840 (137)*

The wavelength of the radiation corresponding to the transition between the
F = 1and F = 0 states is '
A~214cm (17-40)
and the frequency! is '
L
A

¥ = -~ 1420 megacycles - {17-41)
The radiation arising from this transition plays an important tole in astronomy.
In 2 gas of neutral atoms, the F = 1 state cannot be cxcited by ordinary tadiation,
because of 2 selection rule that strongly suppresses transicions in which theze is
no change in orbieal angular momearum. Both the 7 = 1 and the F = 0 states
have zero angular momentum. On the other hand, there are other mechanisms
that can cause transitions. The P = 1 state can, for example, be excited by

* Sec, for exemple, Bethe and Salpeter, for. e,

¢ This frequency is one of the most accuzately measured quantities in physics, mep =
142040%731.500 + 0.028 cycles (Hz). The number involves the distribution of magaetizn-
tion in the proton, bue there is no:theory yet that can deal with a number of this accuracy.
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 collisions, and the return to the F = 0 ground statc can be detecred. From an
Canalysis of the incensity of the 21 cm sadiation received, astonpomers have
fearned a great deal about the density distribution of neutral hydrogen in intes-
stellac space, as well as the motion and the temperature of the gas clouds con-
taining the hydrogen. The average number of newntral hydrogen atoms appears
to be about 1 cm™ in the gelactic plane near the sun, and the cempetature is of

the otder of 100° K.

Problems

. 1. Whar effecr does the addition of a canstant to the Hamiltonian have on
wave function?
2. If the general form of a spin-orbit coupling for a particle of mass m
spin S moving in a potential Vir)is
1 1 dv(A

Heo = ﬁ’ L v dr

t is the effect of that coupling on the specttum of 2 three-dimensional

nonic oscillator? :

3. Consider the » = 2 staces in the real hydrogen atom. What is the
in the absence of a magnetic field? How is that spectrum changed when

¢ atom is placed in a magnetic field of 25,000 gauss?

" 4. Show that

m————— g —— =

1
v " = —d4xi(r)

Use the procedure outdined in the foomote w Eq. 17-34.
5. Consider a gas of hydrogen atoms ac low temperature and density. At
what temperature will the F = 1 and the F = 0 swtes be equally occupied?
(Note. The Boltzmann factor

—EiaT
&

i

I

' . 'gives the relative probability of occupation of a given state with degeneracy g
y " when the system is in equilibrium, at temperatute T.) .

"o & Consider a harmonic oscillator in threz dimensions. If the relativistic
expression for the kinetic epergy is used, what is the shift in the ground state
eneegy? ]

7. The deurernn consists of a praton (charge +¢) and a neutron (charge 0)
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in 2 state of total spin 1 and cowl angler momentum J = 1. The g-facvors for
the proton and oeutron are

&p = 2(2.7896)

gr = 2(—1,9103)

{a) Whatare the possible orbital angular momentum states for chis system?
If it is known that the state is primarily *5;, what admixrure is allowed given that
patity is conserved?

(b) White an expression for the interaction of the deuteron with an ex-
tetnal magnetic field and calcolate the Zeeman splitting, Show that if the
interaction with the magnecic field is written in the form

= —parB
then the effective magnetic moment of the deuteron is the sum of the proton
and neutton magnetic moments, and any deviation from that result is due to an
admixture of non-§ state o the wave funcrion.

8. Consider positronium, a hydrogenlike arom consisting of an electron
and a positton (same mass, opposite charge). Calculare (2] the ground sezte
encrgy, and that far the # = 2 states; (b) the relativistic kinetic energy effect and
the spin-orbit coupling; (c) the hyperfine splitting of the ground state, Compare
your tesults with those for the hydrogen atom 20d explain major differences.

References

The most demiled discussion of the physics of hydrogenlike atoms may be
found in

H. A. Bethe and E. E. Salpcter, Quamum Mechanics of One- and Tuwo-Electron
Arerms, Springer Verlag, 197,

The Thomas precessicn is discussed in
R. M. Eisherg, Fusdaments of Modern Physics, Wiley, New Yark (1961)



cbapter 18

The Helium Atom

_ The helium atom consists of a nucleus of chazge Z = 2 and two electrons,
which we label 1 and 2. Each eleceron is areraceed to the nuclews, and the two
electrons repel each other, We assume, and this will turn out to be correct, that
no forces, other than the electromagnetic ones (Coulomb to a very good approxi-
faation), ate necessaty to deseribe the dynamics of che helium atom with the
help of quantum mechanics. '

If the nucleus is placed ac the origin, and if the electron coordinates are
" labeled ry and ry, then the Hamiltonian for the atom is (Fig. 18-1)
- ._l_ -1 L 8 z_eg —_ Z_e’ __G, —
T m + m n rs + [re — w2 (18-1)
*Hete m is the electron mass. We shall ignore the small effects conaecred with the
motion of the nucleus,! relativistic effects, spin-orbin effects, and the effecr of
 the current caused by the motion of one electron, upon the other elecuron. The
. abve Hamilconian may be wricten as

H=HY F Ho {18-2)
with
1 Ze :
) o .
. H 2m P T (e
and
e!
V=—" 18-4
P— {18-4)

We shall work with the nuclear charge Z and set Z = 2 larer. Our work on the
“hydrogen atom provides us with a complete set of eigenfunctions for H'” and

1 The seduced mass effect takes a somewhar different form since one is wying te
«convert a threc-particle problem inte an ¢ffective two-particle problem. This is warked out in
D, Park, Introduciion t» the Quamizm Theory, MeGraw-Hill Co. {(1964).
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PR

2e

Fig. 18-1. Coordinares used in the formulation of the helium Hamiltonian.

H®_ Thus, if we were to ignoge V¥ in the total Hamiltonian, we would havye a
solution to the eigenvalue problem for the two-electron system. The eigen-
functions would be

MPLEs) = ot (T1) Gmyims{s) (18-5)
for the equation
[HD 4 H®] l{(l‘],l"zj = En(r,rs) {18-6)
and the energy would be given by-(Fig. 18.2a)

E=E,+E, (18-7)
where B, = — (mc®/2)(Za)?/nt. Thus in the idealized model in which the two
electrons ignore each ather, the Jowest energy is

E = —2E = —m®(20)® = -108.8 eV (18-8)
Mot that this és 2 X 2? = 8 times the hydrogen energy of —13.6eV. = . .

The first excited state is one in which one electron is in its ground state,
# = 1, and the second electron is raised to the st excited # = 2 scate. Then

E= B+ E = —68.0eV (18-9)

The ionization energy, that is, the energy required to temowe one electron from
the ground srate to infinity is

mm: = (EJ + Em) — 2B, = 544 eV (18.]0)

and, interestingly enough, the onset of the continuam lies Jower than the exdited

state for which both electrons are in the # = 2 state. The energy of the latter

state i3
E = 2B = —272¢V (1311}
and ir brings up a2 new phenomenon: ehe existence of & -discrete stare in the

continsum for the Hamiltonian H™ + H®. We shall bnefly discuss the impli-
cations of this at dhe end of the chapeer,
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Fig. 18-2. (a) The spectrum of helium as it would lock in the absence of the
electron-electron interaction, The zero energy poine is chosen at the ionization
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{onthohelium)} srates. The level labeling has a suppressed (15), so chat the Jevel
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Since the two electrons are idensical fermions we must make the rotal wave
. function antisymmetric under che interchange of space and spin cootdinates of
the elecrrons. Thus a proper description of the ground state of this idealized
moedel is

Bof¥y,ts) = o gelrr) _¢1m{1‘nj Kiingier . {18-12)

- 'The spatial part of the wave function is necessarily symmetric, and that is why the
state must be 2 spin singlet state

1
X, = — {yih @ o) 18-13
singlet = '\/E (x+x X X+) ( )

For the fiest excited stare, we have two possibilities, which, for ¥ = 0, are
degenerate in energy. These are

1 .
€ = v [#u0o(r1) Bermlra) + dormrr} droors)] Xuingice (18-14)
and the space-antisymmetric, spin symmetric

a) = % (B00(r:} SeimiTs) — tharalrs) $100(ra)] Kesipger (1815}

where

L

1
Kriptee = V3 Px? + xOx®) - (18-16)

A OxE
is orthogonal o Kiingler-
The presence of ¥, the electron-electron Coulomb inreraction may, in
first approximation, be rreared as a perturbation. Let us first compuze the enctgy
shift of the pround state to Frst order in V. We have

‘!
m 240(T3,¥) (1817)

AE = f &3ridr, wy(,rs)

Since che perturbation does not involve the spin, we need only consider

e’ 2
o=l f#o0fies) | (18-18)

AE = fd‘rld’rgiqﬁm{hN’

The integral has a simple physical interpretation, Since | mwofrs);? is the proba-
bility density of finding electron 1 at r,, we may interpret. e|deo(ry}|® as the
chatge density due 1o electron 1. Hence

Urs) = f d3ry ¢l Punlr) | - {(18-19)

I‘l'J = 1'9’



The Helium Aror 2B7
'is the potential at ra due to the charge distribution of electron 1, and

AE = f d3r; e} punlr)|® Uirg) {18-20)
i therefore the electtostatic enetgy of interaction of electron 2 with that pe- .

tential. The integral can be carried out. With ¢un = (2 ax) (7} ag) 3" Pkl
we have

1 = o o« )
AE = [__ (Z/dn)s] egf r}g dfl e—zzma-f rgg drz e-zz.w.
L ] a 0

fmlfm,;, (18-21)
[) — w8

In writing this, we used the separation

fd3r=fmr’dra’§!
1

and isolated the oply tetm that depends on the angles between r and r;. We have

1 1

[pg — 13]  (ra? 4 r? — 2nes cos )2

{18-22)
where # is the angle beeween ry and ¥,. We may proceed in one of two ways.

~ (a) Most directly, we choose the direction of 1) as z-axis for the J@2
integmion. and get

f p 1 i 1 1
9‘ |l'1 - l':l __L ‘# -1 a.(cos 8) ("'12 + ng — 2y rg COS 3}”2

cos & = 41
= — 2y [(ﬁ’ + #? — Zryra OS 9)”’] » 2
2rire osd = —1
x .
=—(n+n—n—mnl) <> (18-23)
ri¥s

The integration over 49, is trivial, since nothing depends on that angle, so that

f 4o = dx {18-.24)

 and we are left with

I AL = o
fe2 (_,_.) f i an e—?Zﬂ.r‘wf rs df’g e—]Zwm
an & ) do

Xi{ntrn— n—nl) (18-25)
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(b) A very useful expansion, necessary when there is additional angular
dependence in the numerater, is the following. For v, £ ra,

2 —1f2
(12 + re* — 2ryr COR 812 = o2 (l + -rlg — 2i oS B)
#] n

. 1 ksl ¥q E

=—2X =) Pleos® {18-26)
1 L=g \1

with the roles of r; and = reversed when ry > . Thus

- L
P — 1] >

L=g ¥

wherze #y. (r) is the larger (smzller) of 1 and . We can now proceed as be-

fore, using the fact that

-% f I cos 8 Pricos §) = by, (18-28)

a5 a special case of

1 1 a ’
> f . dcos 8) Pr(cos 6) Pr(cos ) = ZLI:- . (18-29)
In any case, (18-25) becomes
AF = 4‘:(2/“0)5-[ ” drl P-ZZﬂf.n { 2['1 o dr’g-ZZw’un
[ o .
-+ Zr,f r2 dra f—zz’#"] - (18—30)
"
The integrals are straightforward, and yield the answer
3 Ze? 3 1 ' :
AE=~— =-Z{- o I
PRl z (2 wc’a) {18-31)

This is a positive contribution, since it arises from a repulsive force, and its
maguitude, for Z = 2 is 34 eV. When this is added to the zcto order result
of --108.8 ¢V we obtain, to first order

Em~ —748eV {18-32)
When this is com pared with
Emp = —78975 ¢V - (18-33)

e sizable discrepancy is seen. Physically, we may arttibute this discrepancy o
the fact that in our calculation we rock no account of “sceeening”’, that is, the
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effect that the présence of one electron tends to decrease the net charge “'seen’”
by the other electron. Vety roughly, if one argues that, for example, electron 1
5 half the time “"between” electton 2 and the nucleus, then half che dme electron
gees a charge Z and half the time it sees a charge £ — 1, that is, effectively, in
the cxpression

E+ AE = — % métel (zza - 32) (18-34)

—~ 1/2) should be substituted for Z. "This does improve agreement, but the
frode argument advanced is not sufficient justification for the choice of 30% for
the probability of effective screcning. We will return to this subject later in this
chapter, when we discuss the Rayleigh-Ritz variational principle for the ground
state energy. .

' We next consider the first excited state of helium. It will be sufficient
‘alculare the energy shift with the singlet and tiplec m = 0 swates fisted i
{18.14) and (18-13), since the shifc is caused by 2 perurbation that commutes
with L,. For such a pertusbation, the shift must be independent of the mi-value.
Again, because of the spin-independence of the perrurbing potential, V, we have

12

-éﬁ?’n = %fzfd‘ﬁfﬁ‘i‘z [bialrs} don(rs) £ daualrs) $roolre)]*

1
ll'x - 1'3|_

e [proolrr) inlre) == Ganlr:) doolrs)]

= e"fd'ﬂfﬂn’:l‘f'm(fl)|2|¢’=”(n)!g TJTEr—gl

+ & f A3 f A*rs $roolEs) Driol®e) -i;—_lTﬂ anlrn} Gan{ra)
: ' (18-33)

In obuaining chis simplified form, we made use of the symmetry of ¥ under
NI
The energy shift is seen to consist of two terms; the first has the familiac
form of an elecuostatic intetaction between Two “electton couds” distibuted
" according to the wave functions of the two electzons. This term is just 2 simple
geaeralization of the term that we found for the ground state enetgy shift. The
second term has no classical interpretation. Its otigin lies in the Panli principle,
and its sign depends on whether the state has spin 0 or 1. Thus, because of this
exchange contribution, the singlet and uiplet terms are no longer degenerate.
Although we considered w = 2 here, we have quite generally

AES) = Jo — Kni
MBS} = Jut Ku (18-36)



290 Quanwum Physics

The integrals can be evaluared in closed form (it is here that {1827} becomes
useful], but we shall not do chis here, The integral ] is manifestly positive, and
it turns out ther chis is 2iso the case for K, For [ = # — 1 this is obvious: the
wave functions appearing in (18-35) have 80 nodes in that case. That the wiplet
state should have a Jower energy than the singlet state, char is, chat

jnl’ - Knl < Jnl + K
that is,
Ki>0 {18-37)

aan be atgued on qualitative grounds. For the triplet state the spatial wave func-
rion is antisymmectic, so that the clectrons are somewhat constrained to stay
away from cach other. This tends to reduce the scteening effect, so thac each
electron "'sees” more of the nuclear charge, and ic also tends vo make the tepul-
sion between the electrons less effective than For the spatially symmettic singlec
sute. An interesting aspect of this resulr is that, although the perrutbing po-
tential 2/ [ry — 14| does not depend on the spins of the electrons, the symmetiy

* of che wave function does make the potential acr as if it were spin-dependent.
We may write (18-36) in a form that exhibits this. Let the spins of the two
electrons be 81 and ;. Then the total spin § = & + sy, and

St =g+ 5+ 25, 5 {18-38)

If we act with this on triplet and singlec states {18-16) and (18-13) that are also
eigenstates of 8,? and 8,2, we get

(5 + 1R = iﬁ*+§ﬁ’+251-ag
thar s,
1 toipler
2 P

28y my/f2 = (S + 1) —

L RN

- g singlet {18-39)

We may thus write, in terms of the ¢'s related to the spins by s; = (1/2) fid;,
Abny = Jui — é {1+ 6 - 85} Koy (18-40)
We shall see this phenomenon again when we discuss the He molecule. Usually
spin-dependent fotces berween atoms are "quite weak, As illusttated in the

example of spin-orbit coupling, the spin-dependent forces tend 1o arise from
felativistic corrections to the smtic forces. In the spin-otbit example, these forces
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Fig. 18-3. Schematic gketch of splitting of the first excited states of helium.

are down by a factor of a2, which is just (#/¢),? Such forces could not be strong
enough to keep the electron spins aligned in a ferromagner, except at uo-
realistically Jow temperatures.? The spin dependence due to exchange is much
stronger than that: the force is of the same order of magnitude a5 the electro-
static force, and, as fitst observed by Heisenberg, it is tesponsible for the phe-
nomencn of ferromagnetism.

The spectrum of the first few excited states of helium is shown in Fig. 18-3.
The notaticn used for the unperturbed staces is that of orbikels, that is, the quan-
tum numbers of the yppercurbed electrons. Thus both electrons in the ground
state are in v = 1,7 = Q states, and we write this as (15,15), or more briefly (L)%
Tt should be understoad that when we write (163(28), 25 fot the first excited state,
this does not mean that one electron is in one state, and the other electron in the
other, since we must write totally antisymmeuic wave functions for the electrons.
Another way of Jabeling the state is by the *5+'L; notation, which we nse for
the perrurbed states in the figure. We see that the singler states lic above the
triplet states in 1. given multiplet. This follows from the symmetry {cf. our
argument that Kat > 0) and is a special example of one of Hund's Rules: Other
shings being equal, the states of highest spin will have the lowers energy.
) If we excite helium from the ground state by shiping ultraviolet light on it,
we find that the slecrion rude AL = 1, which we will derive later, implies an ex-

2 A useful numerica] relation is that in E = ET a temperamre of 300° K -conesponds
o &n eneigy E of 1/40 eV,
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citation to the P states, Furthermore, thete is 2 selection rule AS = 0, chat is, only
transitions singlet — singlet and tripler — eriplet are probable.? Heace the state
most strongly excited from the ground state is the 1P, state. The other levels
may also become occupicd through other mechenisms, for example, collisional
excitation. Once accupied, the radiative ragsitions to the ground state are very
improbable. The *P state, which may be populated when atoms in the 1P| state
undergo collisions with cther acoms in the gas, can only decay to the 35, state,
and that state is metarable, since it cannot decay ro the ground state easily, The
fact that thete are no wansitions, ro good approximation, between triples states
and singlet states, led, at one time, to the belief that there existed two kinds of
helium, ortho-helium (triplet) and para-helium (singlet).

The spectrum of helium that we saw in Fig. 18-26 shows that the excited
staces (15)(nf) have energies that do not differ very much from those of the
hydrogen atom levels. Thus the binding energy of one electron in the atom is
24.6 eV {total binding energy minus binding energy of singly ionized helium =
79.0 — 34.4 = 24.6 eV), wheteas the energy that would be liberated if one
clectron were to be removed from the 2r seace is of the order of 4 — 5 eV, which
is comparable 1o the ¢nergy 3.4 €V (= 13.6/x? eV} for hydrogen, The reason for
this effecr is that the “outer’” electron sees only a unit positive charge, since the
“inner” electzon in the (15} otbital cends to shield the nudeus, leaving 2 nec
effective charge = Z — 1. This is not the case for the ground state, since both
electrons have access to the nucleus. Thus the ground state lies quite a bit deeper
than the hydrogen ground state, '

ag In our discussion of the first order calculation of the gtound state energy,
we noted that there was a discrepancy of about 4 <V from the experimental
value, Rather than attempt 2a estimate of the second otder result, which would
be very redious, we turn to an entirely different method of calculating the
ground state energy—the Rifz variational methed,

Consider = Hamijtonian H, and an atbitrary square integrable function &,
which we chaose to be normalized to unity, so thac

Tl¥y=1 : {18.41)

This function ¥ can be expanded in a complete set of cigenstates of H, denoted
by ¢..

By = Egn (18‘42)

The exptession reads

¥ =3 G {18-43)

s Belection rules will be discussed in Chaprer 22.
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Now

(| H|¥)

2 T GalHI¥w) Ca
Y T GCoEn{dal¥n)

= E |C,|’E,.
2 B2 G (18-44)
i % "
i Since (18-41) implies that
YG =1 (18-45)
: we obtain the result that
* B < (F|H|T) (18-46)

‘We may use this result to calculate en upper bound on Eo. This can be done by
oosing 2 ¥ that depends on a number of pasemeters {on, a, . . .J, calculating

| H| ), and minimizing this with respect to the paramerers.

" We illustrate the utility of this procedure by calculating the ground seate

#netgy of helium with & ¥ chosen to be a product of hydrogenlike wave func-

tions in the (15) orbitals, but corresponding to an arhitrary charge Z* We take

T(rirz) = wwolr1) Yuoolrs) (18-47)
" whete
(‘é% - 'Z?) da(x) = ‘li’lun(r) {(18-48)

with € = — (1/2) mc*(Z*a)%. We now need

' 2 .
fnf‘ﬂfﬂ"‘fe $100(r)) Vioolrs) (l:;! + ];_; _ Er? _ g;_
o + m%grzl) Yomoes) Yaoolr) (5)

We have

{0t 2
f % f d%rz droo(13) $roo(re) ("l‘;; - E:T) Yim(rs) Yioo(es)

* * * _
- f P Wooles) ("‘ AN u) V)

2m 1 - 141
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i

e+ (Z* — Z]f’[d’h_yhno(f:”g %
_ 1

e+ @-zel
ap

]

e+ Z¥Z* — Z) mcto? . {18-30}

An identical factot comes from the Hamiltonian for electron 2, and the €xpecta-
tion value of the elecrron-electron repulsion has already been calculated in
{18-31), except that we must substitute Z* for Z there. Adding up the terms, we
get

fl

(¥|HE) = - % mele? (zz*= + 4ZMZ - 2% — ‘_51 z*)

) _
= 5w (4ZZ* — 27% — 3 z*) (18-31)

Minimizing this with respect w0 Z* yields

5
=z 2 18-52)
Z y {18-52)
which i5 an imptbvcmcm- on .thc guess we made earlier (Z — 1/2). We thus
obaain

2 .
Eo < — ;ms"a’[z( - Ijé) J = —7738¢V (18-33)

when we substiture Z = 2, This is much better than the first order pcrturbation.
resule. :

The variational calculation can be done with more complicated trial wave
functions. Pekeris* used a 1075 term wave function and minimized (F|H|¥5Son
a computer. The. resulting bound agrees, within expenmental errors, with what
is measured, It is, of coutse, trus that such a complicared wave funcrion does not
have a form thar is as easily interpretable as (1 8-47), with its partial sceeening
effeces. It does, however, provide strong support fot the correcmess of quantum
mechanics, and for the assumption that only elecrromagnetic forces are required
o explain the scructure of aroms, '

In conclusion, we brieRy return o our obsetvetion that there exist eigen-
values of HO? + H'® that lie above the jonization threshold and thet are never-
theless discrete. The states labeled by the otbitals (2}t or (2:5}(2p), for example,
lie well above the ionization energy. This has some dramatic physical conse-
quences, Consider, for example, the (25)(2p) state. If the #lectrons form a spin

1 This i3 discussed in Bethe and Tackiw, Joc. e,
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singlet scare, then this will be a Py state, and it can be excited from the ground
state by the sbsorption of mdiation, since the selection tules A/ = 1 and AS = 0
ate not being violated. This state, once excired, need not decay back to the
ground soate (18] or to another state allowed by the selection rules (a D state,
say}, because it can go inro another chanwel: it can decay into an electron and
singly ionized helium, He*, with the electron snetgy determined by energy
conservacion. This process is described as antoionization.

The (2:}{2p) state in the continuvum will show up very cleary in the
scactering of electrons by Het ions. Whien the electron energy is such that the
compound state can be formed, a very dramatic peak will occur in the scamering
tate, Similatly, in the absorption of radiztion by helium, in the vicinity of the
energy of the compound state (¢~ — He™), a sharp peak is seen in the absorption
(Fig. 18-4). There is absorption at other energies, 100, since the process

radistiva + He — ¢~ + Het

can occur, but che absorption at energies away from the compound state enctgy
will vary vety smoothly with energy., We can describe the state in sull another
way by calling it a remnant state. Since it decays inco its constituents ¢~ + He,

i 1 | 1 1
nq 200 190

Wanelength (A

Fig. 18-4. Resonance in the helium absorprion spectrum above the continuvum
threshold; the Aest peak occurs at the energy comesponding to the location of the
(2:3(2p) level. (From R. P. Madden and K. Codling, Phys. Rev. Letéers, 10, 516
{1963), by peemission.)
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it does not exist forever. Hence, by the uncerqinty relation, AE = AfAs, it
appesrs that its energy is not precisely defined, which seems to conmadicr the
fact that the (20)(2p) stete does have a well-defined enetgy. It turns out chay if
the coupling of the discrete state to the continuum state is mken into account,
the state ceases to be discrete, and its energy may lie anywhere in a narrow range
about the energy 25 calculated withour the coupling. We shall resurn to his
topic in Chapter 23 and in Special Topics section 4, “Lifetimes, Line Widths,
and Resonances.”

Problems

1. Consider the helium atom in the approximation in which the eleccron-
dlectron intetaction is ncglecred. Wha is the lowese otthohelium (spin 1) state?
What is its degeneracy in the above approximation? Wrice down the expression
of the splitiing due 1o clectron-electron repulsion in first order pertarbation
theory, and estimate its magpitude.

2. Calculate the energy shift AES) (! = o, 1).

3. Consider the lowest state of orthohelium. What is its magnetic moment,
that is, caleulate the interaction with an external magnetic field.

4. Consider

"E" = (¥|H|¥)
with an atbitrary trial wave function ¥. Show that if ¥ differs from the comect
ground state wave function e by terms of order ¢, then "E” differs from the
ground sezte energy by terms of order .
(Note. Do nat forget the normalization condition {(¥]¥)} = 1.)

5. Use the variational principle to estimate the ground state encrgy of the
three-dimeasional harmonic oscillator, using the trial wave function

¥ = N

6. Consider a one-dimensional cut-off harmonic oscillator of the form

Filx)

I

%m’(xa — &% |x| < &

=0 x| > a

Use the vatiational principle to calculate che best upper bound to the ground
state energy using the exponential form We 1%,
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7. Consider the binding of a proton and a neutron (both with me® =
938 MeV, approx) by means of a potentist
—rim

Viry = Va .

with the systerm in an L = 0 state, The range of the potential is given by ry. Use
the following procedure to calculate the depth of the potential tequired to give
the binding encrgy Es. {a) Calculate an approximate value of the binding
energy using the variational principle, (b) In the expression that connects the
approximate value with 7o and the depth of the potential, insert the expetimental
yalue of Ez. Do your numerical evaluation using rv = 2.8 X 107" cm and
By = —2.23 MeV. (Do not forget the reduced mass.)

8. Consider a finite-dinensional manix H;;. Show that the condition for
minimizing

|| ¥y = 3 & Hij#;
i1
subject to the condition

Wiy = i a @i =1

yields the cigenvalues of the matrix H.
(Hinz, Use the method of Lagrange mulripliers.)

9. Use the vatiational principle to show that a one-dimensional artractive
potential will always have a bound state.

(Hins, Evaluace (I} H|¥) with a convenient trial Function, for example, Ne#'#
‘and show that the above can always be made negacive.)

10. Use the date of Fig. 18-4 to compute the location of the (25)(2p) level
above the gronnd state of helium and compute the velocity of the electron
emitted in auroionization, if the He* jon is in its lowest state at the end. Whar
will it be if the Het ion is in its first excited state?

11. Consider 2 wave function ¢{m, as, . . . ) for which only the de-
: pendence on some parameters is exhibiced. The wave function is normalized
G, oo, oo o) [Wot, 0, . )}y = 1

and the dependence on the parameters is so chosen that
& = (e, .. N H|¥aw, .. D)
is 4 minimum, Show that the paramerters are detenmined by the set of equations

(q:-(a.,...)lm %)—p(ﬂa:,...”%):fl i=1,2,...8
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where u is a Lagrange mulciplier: Ler H depend on a paramerter ) {e.g., the
auclear charge or some distance, say the internuclear distance in a molbecule).

_Then the «; will depend on that parameter. Prove that
48 OH
& = o1 e )

This is known as the Feynman-Hellmana theorem and is very useful in molecular
physics calculations.

12. Use the variational principle to estimate the ground state- energy for
the anharmonic oscilfator

2
H=L | 30
2m

~ Compare your result with the exact resuit

b = oo (2"
2m
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chapter 19

The Structure of Atoms

The ¢nergy eigenvalue pa:oblem for an atom with Z electrons has che form

¥4 P‘g
(E + Z 11- - )ﬂ'(l"l,l'iu-u,l'x) = Ey(ry,eq,...,rz) {191}

el 2m i i

and is a partial differential equation in 3Z dimensicns. For light atoms it is
possible to solve such an equation on a computez, but such solutions are only
meaningful to the expetr. We shall base our discussion of atomic structute oo 4
different approach. As in the example of helium (Z = 2), it is both practical and
enlightening o weat the problem as one involving Z independent electrons in a
single potential, and to consider the electron-electron interaction later. Perturba-
tion theory turned out to be adequate for Z = 2, but as the number of elecrrons
incteases, the shiclding effeces, not teken invo accaunt by fitst order perturbation
theory, become mare and mare important. The variational principle discussed
at the end of Chapter 18 had the virtue of maintaining the single-particle picture,
“while at the same time yielding single particle functions thar incorporate the
saeening comections.
To apply the vatiational principle, let us assume that the trial wave func-
tioa is of the form :

e T ¥} = dlrs) delrs) . . . belrs) (19-2)

Each of the functions is nommalized to unity. If we calculate th expécration
value of H in this state, we obrain

{H) = Z d’n@(n( P oo Z’)ur‘)
2m

+eX X f f e, dv; ""‘("” “’r’(l"'w (19-3)
I-d) r = Iy

The proceduse of the variational principle is to plck the @i{ry) such that (H}isa
minimum. 1f we were 1o choose the ¢,{r;) to be hydrogenlike wave functions,

FEM)
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with a different Z; for each electron (and with each electron in a diffetent quan-
tum stete 1o satisfy the Pauli exdlusion principle}, we would get a set of equa-
tions anzlogous te (18-51) and {(18-32). A more general approach is that due to
Hartree. If the ¢,(r;) were the single paticle wave functions that minimized (&),
- then an alceration in these functions by an infinitesimal amount

@ilrs) — ¢ilri) + Milrs) (15-4)
should only change (H) by a term of order A* The alteracions muse be such that

f rilddry) + 2ird|* = 1 (19-5)
that 1s, to fiest o_rdct in X,
f drlde(r) filrd + 9:le) fir)) = 0 (19-6)

Let us compute the tetms linear in A that arise when (19-4) is substicured into
(19-3). Term by term, we have

2 [anfeied (- v + 0560 (- - vs) e
E 2m 2m
= RZ f“u"" [ﬂ[r.') [— ﬁ Vi%;(l's)] + fx‘.(f-') |:— %Vi’ﬁf(rs):ll

(19-7)

To obtain this we have integtated by parts two times, and used the fact that
J{r:) must vanish at infinity in order to be an acceptable variation of a square
integtable function, Next we have

—X E f d'r; [f: rs E:j $:(r) + () ? f;'(l'i):l {19-8}
and Gnally '

LU d’l’ffdar i[f.(r-M(r. )+ Al 4ixd]| itrs)|*

ixf g
+ lf,- ) d:{e) + fr) (2] delxd|?} (:9—9)

We caonot just set the sum “of these three erms equal 1o zero because che fi(r;)
are consugined by (19-6), The proper way to account for the constraint is by the
use of Legrange multipliers, that is, we multiply each of the constraining rela-
tions (19-6) by a constant {the “multiplier'") and add the sam to our three terms.
The total can then be ser equal to zero, since che constraints on the f{r;) are
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now taken care of. With a certain amount of notational foresighe we label che
multipliers —e;, and thus get

E‘_ f 4 s { fi;(rs) [-' ?12 V."#’i(l'i)] - ﬁ:{r-') 1:’: 4":(1"')!
+ ‘1}: Effd’l's dbr; f;(l's} iL‘Ii)fwbs(n)

i [r; —
- J’ i f,—'(r.—) $:r:) + (complex conjugate term) = 0 (19-10)

In detiving the second line, first we converted che double sum 3,5, 22; into
(1/2) 3 37 which is unrestricted except for the requitement that § > 7,
and then used the fact that the integrand in (19-9) is symmenic in / and §. Now
fi(x) is completely unrestricted, so that we may treat fi(rs) and fi (e as com-
pletely independent {each one hus 4 real and an imaginaty part). Furchermore,
othet than being square integrable, they are completely arbirraty, so that for
(19-10) to hold, the coefficients of fi(rg and f: (r:) must sepamately vanish ai eech
point x;, since we are allowed to make locl vatiations in the functions fi(r,)
and 77 (r.). We are thus led to the condition that

ﬁ! Ze! 4
[— —v— + & Z d%; 'I-?Mil #idry = ehelrs)  (19-11)
2sm i i i — x5
and the complex conjugate relation.
This equation has 2 swraightforward interpretation: it is an energy cigen-
value equation for electron “#”* located at r;, moving in a pocential

z* Nk '
Figd) = ——+ ¢ 2 . dsrj“M (18-12)
s = ey — my
thar consists of an attractive Coulomb potential due to 2 nucleus of charge Z,
and a repulsive contribution due to the charge density of all the other electrops.
We do not, of course, know the charge densities

ary) = e|;(r;)|? (19-13)

of all the other electrons, so that we must search for a self-consigent set of ¢(r,
in the sense that their insertion in the potential leads to sigenfunctions that
reproduce themsebves, The equation (19-11) is a rather complicated integral
- equation, bu it is at least an equation in three dimensions (we can teplace the
variable ¥, by r), 2nd thar makes numerical wotk much casiel. An even greater
simplification occurs when Vir) is replaced by its angular average

i = f -}ﬁ—_ vite) (19-14)
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for then the self-consistent potential becomes central, and the -self-consistent
solutions can be decomposed into angulsr and radial Funcrions, chat is, they will
be functions that can be labeled by a;, L, #;, 0, with the last label referting to the
spin state (5, = +1/2).

The trial wave function (19-2) does not take into account the exclusion
principle. The latter plays an importint role, since if all che electrons could be in
the same quantum state, the energy would be minimum with 211 the eleccrons in
ther = 1,/ = 0"orbital.” Atoms do nochave such a simple structure, To take the
exclusion principle into account, we add to the Awsssz represented by (19-2) the
Tule: every electron must be in a different state, if the spin states are included in the
labeling. A mote sophisticated way of doing this automatically is to teplace
(19-2) by a ttial wave function chat is & Slater determinant (cf. (8-60}]. The resulr-
ing equations differ from (19-11) by the addition of an exchange term. The new
Hantree-Fock equations have eigenvalues chat tuen out to differ by 10-209% from
these obtained using Hartree equations (with the rale stated above), and since
it is 2 litdle easier to talk about the physics of atomic structute in terms of the

" Hartree picture, we will not discuss the Hartree-Fock equations.

The potential {19-14) no longer lias the 1/r form, and thus the degeneracy
of zl] states with a given #and [ < n — 1 js o longet present. We may expect,
however, that for low Z at least, the splitting for different 7 values for a given
# will be smaller than the splitcing berween different n-values, so that electrons

* placed in the orbitls s, 25, 2p, 3r, 3p, 34, 41, 4, 4d, 4f, . . . will be successively
less strongly bound.! Screening effects will accentuate this: wheteas s arbitals do
ovetlap the small r region significantly, and thus feel the full nuclear atcraction,
the p- 4., ... orbitals are forced ont by the centrifugal barricr, and feel less than
the full atttaction. This effect is so stuong that the encrgy of the 34 electons is
vety close zo that of the 4selectrons, so thar the anticipated ordering is sometimes
disturbed. The same is true for the 44 and 5¢ electrons, the 4f and 65 elecuons
and so on. The dominance of the /.dependence over the n-dependence becomes
mete imporant 45 we o to larger Z values, as we shall see in our discussion of
the periodic tabls. ' :

The number of electrons that can be placed in orbitals with a given (n.f} is
2(2/ + 1), since there are cwo spin saates for given m-value. When all these
224+ 1) states ae filled, we speak of the dosing of @ shell. The charge density for
a closed shell has the form

i
¢ 20 [Ru(* Vi 0] (19-15)

 The nocation is the same ag that used for hydrogen. A more seasible noration, used
by nuclear shell-stracture physicists, is to replace the 5 by & — /, which is just an index
represeneing the otdeting of 2 given Astate. Thus instead of starting wich 34 srates, for
=xample, it might be more sensible to have the lowest & sate called the 14 srate, and so on,
We shalt nevertheiess continue o use che conventional notation, even though the g-value
does mor hewe much ro do wirh che ocdering of levels for large Z atoms.
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and this is spherically symmettic because of the property of spherical harmonics
thar

’ )
}: | Yia(84) i = 2al (19-16)

w=—F 4z
Let-us now discuss the building up of atoms by the addition of more and
mate eléctrons to the approptiate nucleus, whose only role, in cur approxima-
ticn, is o provide the charge 2.

Hydrogen. Here there is only one electron, and the ground state coo-
figuracion is (1s). The specuroscopic description of the electronic state is "5y,
and the binding energy, as is well known, is 13,6 eV.

Helium. Here Z = 2, and, as we saw in Chapter 18, the ground state con-
figumation is (1)%, which is a shorchand notation for (14}(1s). The state, in the
(L,5) descriprion is 2 135, state, and the roral binding eneegy is 79 ¢V. After on¢
electran is removed, the temaining electron is in 2 (15) orbit about 2 Z =
charge, so that its binding energy is 13,67 = 34.4 eV. Thus the energy required
to remove the least bound electron, the ionization energy is the difference, that is,
24,6 eV (see Fig. 18-25). It is also interesting to estimate the energy of the brst
excited state, which is (L9{2s): chis is 13.6 Z* + (13.6/2%}(Z — 1]® because of
the shielding, that is, approximately 58 V. Thus it wkes approximately 79—
58 22 20 €V ro excite the helium avom.? Because the electrons form a closed
shell it is chemxcally inert, a properry shared by all atoms whose elecuoas form
dosed shells,

Lithium. Here Z = 32, and the exclusion principle forbids a (15)* con-
figuration, The lowest lying accessible configuration is the (11)%(2s). Since we
afe adding a single electton o a dosed shell (%), the spectrascopic descriprion
of the state is 25y, a5 for hydrogen. If screening were perfect, the addirional
electron would only “'see” a Z = 1, 2nd since # = 2, we would have an energy of ©
13.6/4 = 3.4 V. The screening is not perfect; in facy, since the orbiwl of the
extra electron is (25), chere is a reasonable ovetlap of the wave function at r = 0,
and hence the effective Z is Iacger than 1. The experimental energy, 5.4 eV
shows that £* = 1.3.

Beryllinum, With Z = 4, the catural place for the fourth eleciron to go is
into the second space in the 25 orbiral, so chav the configurarion is (14)°(25)2, and
we agein have a closed shell, with a 'S spectroscopic state description. As far as
the epergy is concerned, the situation is very much like that of helium. If the

tThis is a crude estimatk thar igoores the electron-clecuron repulsion and exchange
effects. The difference between the 20 €V and the 24.6 eV is the 4-5 ¢V that will be released
when the excited atom decays 1o it gmund state, (See Fig. 13—2& )
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screening were perfece, the only difference would be that the last electron is in
an # = 2 state, giving a binding energy of 24.6/#* = 6.2 eV. Screening. is nor
petfect, and the experimental value is 9.3 eV, Although a shell is closed, the
excitation of an electron to a 2p stare will require relatively little energy. Thus in
the presence of another element 4 rearmangement of electrons may yield encugh
energy to break up the closed shell, Hence beryllium is not as inert as hefium.
In geaeral this type of shell is not quite as stable as the shell in which, for a given
#, all the possible Lstates are filled.

Boron. After che dosing of the second shell, the fifth electron can either
be put in the 35 or in the 2p orbital, The latter is lower in energy, and it is the 2p
shell that begins 10 fill up, starting with boron. The configuration is (15)%(2)2(2p),
and the state is 2Py;;. The last deserves & comment: i we add spin 1/2 to orbital
angular momentum 1, we may have J = 3/2 or 1/2. These are splic by the spin-
orbit inferaction '

Ll _ 1 - Lyl
el 8, = UU+ D - L+ ) - S5+ ] - o
{19-17)

and the form of this leads ro the higher J value having a higher energy, sioce the
expectation value of (1/r)[#¥(r)/dr], even though no longer equal to the value
given in (17-16), is still positive. This conclusion may oot hold when there are
more electtons in an unfilled shell. The ionization energy might be expected to
be somewhat smailer than that of beryllium, since the 2p state enetgy is some-
what higher than that of the 2s orbital, becanse of the centrifugal barsier. ‘The
experimental value is 8.3 eV,

Carbon. Here Z = 6, and the 2p shell continues o be filled. The con-
figuration is {1:)%(2*(29)2. The towl spin may be 0 or 1 and the cotal athital
anguler momentum may be 2, 1, or 0 {since we are adding two orbital angular
momenta 1). Since the wave function must be antisymmetric for the two elec-
trons outside the closed shells, a singlet state must have even L, and a aipler
odd L, 50 that there are only the possibilitics 'S, 2P; 1,0 and 'Ds. We now invoke
Hund's rule, refemred to in our discussion of helium: "The state of highest spin has
the lowest encrgy.” Thus we must have 2 3P state, The result, that the stave is
&Py, follows from Hund's second rule, that has been abstracted from spinorbit
calculetions:

1f the incomplete shell is not more than half filled, then the lowest Jevel has
J = |L — §|, its minimum value. If the shell is more than half filled, then
the maximum J value, f = L 4 § has the kast enctgy.

Since it takes six clectrons o 6ll the 2p shell, we obmin J = 0. As far as che
.ionization energy is concetoed, we have increased Z by one. Since che second 2p
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electron can stay “out of the way” of the first onc, by being ina different m-state,
the repulsion between the electrons will be of less imporrance, and we expect'a
somewhar larger binding. The expetimental velue is 11.3 eV.

Nitrogen. The Z = 7 atom has the configuration (L6)*{2)*(2)°, or,
{2)*, if, for brevity, we omit the closed shells from onr description. By Hund's
rule, the spin of the ground state it the maximum value § = 3/2. This is a
symmetric spin state (this is most evident in the 5 = 3/2 state, for which all the
spins must be paraflel), and hence the chree filled 3p orbitals must each bein a
different m-state. Of the total L values of 3, 2, 1, 0 that can be obined by
vectotially adding three unit othital angular moments, the L = 3 state is clearly
excluded. One must look at the detailed construction of the states to find out
: that the torally antisymmetric state is the L = 0 state, so that the ground state
. is 4Sys. The ionization porential might be expected to be a litle larger than that
for cacbon, since Z is again increased by one, and the third electron can be pur
in the thied p orbital without significantly overlapping the ocher two electrons in
the 2¢ shell, chat is, by reducing somewhat the effect of the electron-elecmon
repulsion. The expetimentzl value is 145 eV.

Oxygen. (Z = 3) The configuration may be abbreviated by {2p),* and the
shell is more than balf full, and it appears that the determination of the electronic
stace is very complicated indeed. We can, however, look at the shell in another
~ wayp: we know that when the shell is filled, that is, when the configuration is
(2£)* (Z = 10), then the total state has L = § = 0. We may thus think of oxygen
as having a closed 2p shell with two holes in it. These holes are just like “'anti-
electrons” (though they are not positrans!} aad we can look at possible two-hole
configurations. These will be the same a5 two-electron configurations, since holes
also have spin 1/2. Thus, as with carhon, the possible states consisteat with the
patisymmetry of the two-fermion (two-hole) wave function are 5, 3P, 1D, and
the fout electeons rthat, when added to these give L = § = 0, must be in similar
states. The highest spin is § = 1, and by Hund's second tule, the angular mo-
mentum, for a more than half-filled shell, must be the maxicum f = 2. Thus
the state is 3P;, When the fourth electron is added to the 2p shell, it must be
put into an orbital with an m-vajue that is already occupied, so that the overlap
between two of the electrons is larger than before, Hence it is not surptising
that the ionization enetgy drops to the value of 13.6 V.

Fluorine. Here Z = ¢, and the configuration is (2p)%, that is, we have one
hole in a p orbital. The state must be *Pye since the maximum of J = 1/2 or 3/2
must be chosen. The monotonic increase in the ionization energy resumes, with
the value of 17.4 ¢V. '

Neon. With Z = 10, the 2p shell is closed, the ground scate is 4 '% state,
and che ionization energy, conrinuing the monotonic tread is 21.6 eV.
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At this point, the addirion of another electron requires putting it in an
orbit with a higher # value {# = 3}, and thus neon marks the end of a period in
the periodic table, as did helium. In neon, as in helium, che first available scate
into which an electton can be excited has a higher #-value, so that it rakes quite
a lor of energy o pertwb the atom. Neon shares with helium the property of
being an inerr gas.

The next period again has eight elemencs in it. Fiest the (35) shell is filled,
with sodium (Z = 11} and magnesium (Z = 12} and then the 3p shell, which
includes, in order, aluminum {Z = 13}, silicon (Z = 14), phosphatus (Z = 19),
sulphur (Z = 16), chioriae (Z = 17) and, closing the shell, argon (2 = 18),
These elements are chemically very much like the series: lithium, . . . , neon, and
the spectroscopic description of the ground states are the same. The only
difference is chat, since # = 3, the ionization energies are somewhat smaller, as
can be seen from the periodic table at the end of the chaprer.

It might appear a little strange thar the petiod ends with argon, since che
{(3d) shell, accommodating ten elements, remains to be filled. ‘The face is, that the
self-consiscear pocentizl is not of the 1/+ form, and the intrashell splitting hete is
sufficiently large thar the (4)) state lies lower than the (34) state, though not by
much. Hence a compecition develops, and in the next petiod we have (4s),
(4%, (4)*(3d), (40 (3Y", (4" (3d)%, (4)(34)%, (40)3d)°, {49)°(32)", (4s)(3dY,
(43 (34)%, (40)(34)'%, (45)%(34)° and chen the 4p shell gets filled until the period
ends with keypton (Z = 36). The chemical properties of elements ar the be-
ginning and end of this period are similac o those of elements at the beginning
aad end of other periods. Thus potassium, with the single (4} electron, is
an alkali metal, like sodium with its single (3:) electron ourside a closed shell.
Bromine, with the configuration (45)3(34)1%4p)°, has a single hole in a p-shel)
and thus is chemically like chiorine and fluorine. The series of elements in which
the (34} states are being filled all have rather similar chemical properties. The
reason for this agein has to do with the details of the self-consistent potential,
It turns out that the radii of these orhits® are somewhat smaller chan those of the
(4s) electtons, so that when the (492 shell is filled, these electrons tend to shield
:the (34} electrons, no matter how many there are, from cutside influences, The
same effect occurs when the (4} shell is being filled, just after the {6s) shell has
heen filled. The elements here ate called the rare carths.

Limitztions of space prevent us from 2 more detailed discussion of the
peticdic table. A few additional comments are, however, in otder,

(a} There is nothing in atomic sttuctute chat limits the number of slements.
The teason that atoms with Z 2 100 do not occur naturally is chat heavy nusle
undetgo spontancous fission. -If new, superheavy (meta)stable nuclei are ever
discovered, there will presumably exist corresponding atoms, and it is expected

¥t is underscaod ehat this is just 2 way of ralking ehour the peaking tendencies of
the charge distribution.
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) . Tonization

z Element Configuration Term! Potential eV
1 B {15) 5z 13.6

2 He {14)2 _ % 4.6
3 Li (He) (25) 25 5.4
4 Be {(He)(25)® 1% 9.3
5 B {He)(20)%(2p) 1Prira 8.3
6 C (He)(20)%(2p)® 3P 1.3
7 N (He)(20%2p)? A5 14.3
8 O {He)(2r12(2p)4 p, 13.6
9 F (He)(2:)2(2)° Py 17.4
10 Ne {He)(2r)*(22)* N 21.6
1 Na (Ne)(3s) )2 5.1
12 Mg (Ne){a)? 15 7.6
13 Al (N353 ’ P, 6.0
14 s (Ne)(39)'(3)? P, 8.1
15 P (MNe) (3532 (3)? Sar 11.0
16 s (Ne)Y (32 (3t P, 10.4
17 a (Me) (a3 (3p)* WPyry 15.0
18 Ar (MNe){35)3(3p)° LSy 15.8
19 K (AI](4J) 251;3 4.3
20 Ca (Ar)(45)® 4 6.1
21 Sc (An){45)%(3d) i 6.5
22 Ti (Ar)(45Y%(3d)? 3Ry 6.8
23 v (AN {4n¥34)* iFys 6.7
24 Cr {ArM(4){34)* 5 6.7
23 Mn {Ar)(dsy(3a)* 58ue 7.4
26 Fe (ArM4:)* (3¢ D, 7.9
27 Co (Al‘)(‘ij‘)‘(ﬁd]: . Fyra 7.8
28 Ni  (A)E3E _ 'F, 7.6
29 Cu (AD(4D (50 TE 7.7
5 Zn (A (4s)*(3d)® 5 0.4
31 Ga {Ar) (45)2(310(4p) Pys 6.0
32 Ge (A {4s)2(3dP4p)? P, 8.1
33 As (Ar){45):(3)0(4p)* S 10.0
34 Se (Ac) {4s)2 (304} *Py 9.8
.3~ Br (AR} (45)2(3d)10(4p)}* Py 1.8
36 Kr (A} {40)3d)042)" 5 - 14.0
37 Eb (Kr)(ss} i 4.2
38 St (Kr)(35)? 50 3.7
39 Y (Ko{(5s¥4d) - 2 6.6
40 Zr (KO){30)%4)% ' 7.0

[Comtimued)

Jov



PERIODIC TABLE—(confinued)

308

) lonization
z Flement Configuration Term! Potenrial ¢V
41 Nb  (Kr)(ss)(4d) D 6.8
42 Mo (1) (35} {4d)* ™5 7.2
43 Te (Ko} (50}t {4d)> 88ess Not known
44 Ru {Kr) (5} (447 5F, 7.5
43 Rh = (Ke)({ms)(4d)® Fys 7.7
46 P4 (Kr) {40 15 8.3
47 Ag (Ke)(55) {410 51 7.6
48 Cd (Ke) (35} {40 5 2.0
49 In (Kr)(55){4d)(5p) Pz 5.8
S0 Sn (Ke)(ss)Hdd)(sp)? P, 7.3
31 sh (Ko {53 (4d)19(5p)% s 8.6
52 Te  (Kn)(ss)x{ad)(5p)* *P, 9.0
53 I (Ke)(s5:)H{4d) " (5p)* *Parz 10.4
34 Xe (K (o) H{4d) " (5p)* "5 12.1
55 Cs {Xel(6s) e 3.9
56 Ba {Xe)(6s)* 5% 3.2
57 [ La {Xe) (65)2(54) Dise 5.6
58 Ce (Xe)(66)3(4r)(54) 3, 6.9
39 Pr G{e)(ﬁx)!(«iﬂ‘ qg,i: 5.8
50 o Nd (Cte)6)P(4f) % 6.3
61 E| Pm (Xe)(Or)2 (4= "M Not known
62 Alsm  (Xe)(Gs)lf) g3 5.6
63 3| Xeeyusy 212 5.7
64 ~1 Gd (Xe) (G (407 (54) 5y 6.2
65 Bl X)) Hivs 6.7
66 2| Dy Xe)@UH" *Ia 6.8
&7 2l He (Xe)Erdm 4  Not known
68 5 Er (Xe)(65)3(4f)02 *He Mot known
o0 Tm (Xe] (Gj)zﬁﬂiﬂ“ L L Not known
70 Yb  (Xe)(6s)2(4f 1 L% 5.2
7 [ Lu  (Xe){tn)Ha)H(54) Dise 5.0
72 HE  (Xe)(6)H4fM(d) o, 5.5
73 Ta (Xe}6r)r {454 “Fyz 7.9
74 W (Xe)(B)H4 (54) Dy 8.0
75 Re (Xe)(6r)yH4F ) 4(54)" R 7.9
76 Os (Xe)(an)*{4f)*(3d)" D, £.7
77 Ir (Xe) (s (41 4(5d) Far 9.2
78 Fr (Xe)(BHa MM - D, 2.0
L4 Au (Xe) (6:)(4NM032P i 9.2
80 Hg {XeH6)H4 M5 1% 10.4
81 Tl (Xe) (Gs)2(4314(54)°(62) Pire 6.1 .
(Canfintsd}




" The Soucture of Atoms 309
PERIQDIC ‘TABLE—(continued)

Ionization
z Element " Configuration Term! Potential eV
a2 Pb {Ke}(6)3(d4f)M(5)6p)? 2Py 7.4
83 Bi {Xe}(6s)2(4f )54y NGp)* 1Sz 7.3
84 Po (Xe}(6:)2(4f) (54 N6p)* 3P, 8.4
85 At (Xe)(6)YAf)M(5d)6p)" 1Py,  Notkmown
86 Rn {(Xe)(65)(4f (54 (6p)* 5% 10.7
ar Fr (Ra){7s5) Not known
a8 Ra (Ra){7s)* 15 5.3
a9 Ac (Rn)(7s)(64) Dy 6.0
g0 Th  (Re)(7s)1(&d)* i
g1 Pa (Ra) (70)*(5F)¥6d) *Kyus
92 U (Re) ()2 (3)%(04) Ly
93 Np  (Ra)(7)0(5/)6d) Liuia
0d gl Pu {Rn)(7)%(5/)" Fa
95 Z| Am  (Rn) {70257 35re
%  Elom  Ra)IHHGD "D,
97 <| Bk  (Rn)(7)5F) *Hyyz
98 cf (Rn)(7:)* (51 Ty
99 Es (Ro)(7r)2(5F M ises
100 Pm (Ra){71E5m 1H,
101 Md  (Ro)(7)r(5HM iy
102 | No  (Ro)(zs)3(sf) 15

L Term designstion is equivalent to spectroscopic description.

tha cheir structure will conform to the prediction of the building-up approach
cutlined in this chapeer. )

(b) We went to a preat deal of wouble to specify che §, L, and f quantum
oumbets of the ground states of the various elements. The reason for doing this
is that in spectroscapy, the quantum numbers are of particular interest because
of the selection rules

A =0
iy QL = :tl
A =0, %1 (a00 -~ 0) : (19-18)

that will be derived laser, and that may then be used to detetmine the quantam
numbers of the excited scates. The spectroscopy of aroms, once we get beyond
bydrogen and helinm, is very complicated. Consider, as a relatively simple
example, the firse few states of carbon, which are formed from different con-

"+ figurations of the two electrons that lie outside the closed shell in the {2p)?
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arbitals. As already pointed out, the possible states are 18, 38 1 o and 'De. 'The
3Py state lies lowest, but the other stares are still there. The first excited states
mey be described by the orbirals (28)(3s). Here S = 0 ar 1, but Z = 1 only.
Since the zvalues are different, the exclusion principle does not restrict the
states in any way, and all of the states 'Py, 2Py, ate possible, while the excited
states thar arise from the orbieals (2p)(3f) can have § = 0, 1and L = 2, 1, 0,
keading to all the states 1Dy, 'Py, 5, *Ds 3.1, ¥Pa.1,, a0d 35:. Even with the re-
stictions provided by ‘the selection rules, there are numerous wtwansitions.
Meedless to say, the ordering of these levels represents a delicate balance be-
tween various competing effects, and the prediction of the moee complex spectra
is very difficult ¢ That task is not really of interest to us, since the main point
thet we want to make is that quancum mechanics provides a gualitative, and
sometimes quancitative, detailed explanation of the chemical properties of
etoms and of their spectra, without asseming an interaction other than the
electromagnetic interaction between charged particles. We shall have occasion
to teturn to the topic of spectm,

Problems

1. List the specaroscopic swtes {in the form *H1y) that can arise from
combining

§=1/2,L=1%
§S=2L=1
SHi=1/2,%=1L=4
$i=1,85=1L=1
Si=1/2, % =1/2,L=2

Which states are excluded, among the two-spin questions, if the particles are
identical?

2. Gonsider the following states
lD, EP, AIF. SG, ED’ 3H
What are the possible f values associated with each?

3. Consider the swates 1D, *F, %5, 5G, ®P, 58. Given that in each ooe the state
consists of two identical parricles in their largest possible spin state, which of the
states are disallowed by the spin-statistics theorem?

¢ The spectroscopic Jabeling that we have used has its limitations. Behind irs validicy
lies the physical picture that the total otbital and spin angolfar momenta are separately
conserved, except for the perturbation caused by spin-oehic eoupling. This coupling is
suall for the lighe elements, but for luge Z it cannot be treated a5 a perrurharion. There it ds -
betrer to couple the 7and s for exch electran o form & j, and then consider the jj coupling.
Deerailed considerstion of this is beyond the scope of this beok.
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4. Use Hund's rules to find the spectroscopic descriprion of the ground
states of the following atoms:

N(Z = 7, X(Z = 19}, %X(Z = 21}, Co{Z = 27).
. Figure out the electronic configurations as fat as you ate able to.
5. List the possible spectroscopic states that can arise in the following

"~ electronic configurations: (192, (2%, ()% (20)% (340, (2p)*(3:), (34)*. Take
-into account the exclusion pinciple.
.(Nete. Remember that if all the spins or orbital angulzr momenta are pointing in
the same dite¢tion, then the stare is symmetric; also remember about holes in
“dosed shells.)

6. Plot the jonization potentials given in the periodic table against Z.
heerve the peaks indicating the shell structure of the atoms.

References

i\n excellent introductory treacment of aromic structure may be found in
"G, Herzberg, Atomic Spectra and Atomic Siructure, Dover Publishers (1944).
" An advanced treatment that is defiaitive is

1. 1. Sobel'man, Inzreduction 1o the Theory of Atemic Specsra, Pergamon Press, New
York (1972}, This is a very advanced book.






chapter 20

Molecules

Just as atoms are aggregates of electrons and a single nucleus, so molecules

. are aggregates of electrons and several nucler. Molecules in their lowest energy
state are stablc, that is, it takes a cemain amount of energy to dissociate them inco
their components. Since dissociation of molecules into atorns is the most com-
mon occurrence when enongh energy is transferred o the system, we may call
molecules bound states of atoms, although we shall see that this description
hides much of what makes up the saucture of molecules. The purpose of this
chapter, and the nest, is to show that quantum mechanics is successful in
describing the properties and behavior of molecules.

’ The simplest moleculss are those that involve two nuclei, che diatomic
molecules. Even they are mote complex systems than atoms because, afer the
center of mass is fixed in space, the nuclei are still free to move. This leads vo an
increase in the number of degrees of freedom. Thas for the simplest of all mole-
cules, the Hyt molecule, consisting of two protons and one electron, there are
still six degrees of freedom left, thtee for the electron and three for che relative
tnotion of the two protons. As with atoms, 2 frontal artack on the problem of the
dynamics of molecules, that is, 2 numerical solution of the Schrodinger equa-
tion in many dimensions is possible. For our purposes cruder but more physical
approaches will be mare enlightening. '

Insight into the dynamics of molecules can be obrained from use of the
fact that nuclei ate a great deal more massive than electrons (M/m, > 10%} and
thus their motion is a great deal slower, One may view the motion of the elec-
wons a5 if the nuclei were fixed in space. The motion of the nuclei, on the other
hand, is in an average held due to the electrons. For a given set of nuclear
coordinates, there will be a Hamilroniaa for the electrons. The lowest eigenvalue
of that Hamiltonian will depend on these coordinates, and its minimum value
will determnine che positions of the muclei. This picture must be modified a litde
for nuclei thac are not infinitely massive, since they can also move, Their motion
depends on the elecorons, but they only “see’’ an average chatge disuibution
due to the rapid motion of the electrons, and o first approxirnation, they move

313
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in & harmonic potential about the locations determined by the minimum in the
enzrgy of the electrons.

We can describe the siovation mathemancally as follows. The Schrédinger
equation describing the nuclei and the electrons has the form

[Te + T + V{r.R)] ¥(s,R} = B¥{r.R) (20-1)

where Tr is the sum of the kinetic energies of the nuclei, T, is the sum of the
kinetic energies of the electrons, and V(r,R) is the pocential energy, which con-
sists of the Coulomb attraction of the electrons to the nuclei, the electron-
electron repulsions, and the repulsion among the nuclei. Consider first the
Hamiltonian describing the electronic motion for a set of fixed {R}

Ho= T, + V(r.B) (20-2)
The eigenvalue problem can, in principle, be solved
[T: + V(r.R)] s(rR) = &(R) 2a(r,R) (20-3)

Both the eigenvalues and the eigenfuncrions depend on the walues of R, which
hete play the role of fixed parameters. Since the w..(r R} form 2 complete set, we
may expend ¥(r,R) in terms of them

¥R} = Z iR} w0(r,B) (20-4)

To determine the coeflicients qb.,.{R} we insert this into (20-1), and obtain, wsing
(20- 35 the equation

Tr Y $nlB) #nlr,R) + 2 €a(B) dulR) #u(rR) = E 3 dalR) unir.R)

{20-5)
The first cerm: will consist of terms of che type
k® :
(— TS Yi+ .. ) 3 om(B (e, R) = X [TagnlB)] #u(rR)
- E:E Z,. Ve, ¢.{R} Vi, “n(f R)
- 5:“—1 ZM BulR) Vi, #a(r.R) — . : {20-6)

As a first appro%imation we neglect the second and thitd terms on the tight side
of this eqastion, that is, we assume thac the eigenfunctions an(r,R)} are slowly
varying functions of the nuclear coordinates R, at leasc in the region of the solu-
tions for the minimum electeonic enetgy, Ky defined by

¥, (R} po=r = © {20-7)
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‘This approximation

Te 3 #a(R) tn(rnB) = 2. [Trdu(R)] 2nlr.R) {208)
is the first step in # sequence of approximations by which wariations with respect
w0 R can be taken into account. The procedure was developed by Born and

Oppenheimer, and the fiest approximation is generally 2 good one. If we now
take che scalar product with vo(r.R), and use orthonormality

f L & 40 R) 1n(rR) = B (209)

. then (20-5), together with {20-8), reduces ¢
TapnlR) + emlR) ¢n(R) = Ed.(R) (20-10}

" “This is just the Scheddinget equation for the nuclear motion in & porential ex(R),
# che electronic energy. For R close 1o the minimum points Ko, we may expand

1 e, '
o ~ (R — Ro)* -
| en(R) & enlRo) -+ 5 (R —~ Ro} ( R )o +... (20-11)
" If only the first two terms ate impottant the nudei move in harmonic oscillaror
wells. Thus the nuclei will undergo vibrational motion.! They will also undezgo
tomtional motion, since Tg involves angular coordinates. We may escimate the
magnitudes of the vaticus epergies.
Let us assume that the size of the malecule is of otder . Then, by the
uncertainty principle, the electronic encrgy is of order
L1 R\ '
¢~ — —) (20-12)
. m \a

The frequency of the vibrational motiod of the nucleus is, according to (20-11),
given by the formula

Mua? o a’;;'f) (20-1 3)
Given the potential energy in {20-12), a dimensional argumentc gives us
% B
‘ IR~ mat
that is, .
e \1H
w e (%) —’;’% (z014)

1 The moticn will be somewhat more coanplicared if we do not limit ourselves [0 a
two-tepm expansion of (20-11) but it will 3ull have the qualitative properties that we are
discussing.
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Thus the ratio of the vibmticnal energy of the nuclei to the elecuonic energy is

Bein fieo m \UE
e = 2/ ma® = (E) (20-15)

The molecule can also rotate sbour the center of mass, Typically

4+ 1) R it
ot =2 & 21') (= Y %‘ € - {20-16)

E;

R

Thus, as far as molecnlar straciure is concerned, one may neglect the rotational
and vibrational degrees of freedom. Nevertheless romtional and vibrational
energy levels will exist, and in molecular spectroscopy there will be:

(a) Electronic transitions. I the dimensions of the molecule are of the
order of 1 A, that is,

2k
a o — {2017}
Mo
then
< F2. mclot
hy = 2gh—~ ~
2 X 2r® ]
that is,
16x - - .
N 2T P i6r X 137X 05 A
o Mo . Lo
~ 3500 A ' (20-18)

Thus the radiation emitted in electronic transitions lies in the ulmaviolet.

(b) Vibrational transisions. These ate transitions between different levels
in the approximate harmonic oscillator well. The typical energics will be of the
order of {as/ M)? &, that is, the wavelengths will be of the order of (M/m)'® ~50
times larger. The range of wavelengths, ~2 — 3 X 107" cm, lies in the infraced
region. ' )

(<) The rotational specua will be chacacrerized by wavclengehs M/m ~
10° — 10! dimes lazger than the electronic optical wavelengths, and A ~.0.1 — 1
cm is typical of the micrawave tegion.

To see what form (R} can take, let us turn 1o the simplest molecule of all,
the H;* jon. After separating out the center of mass of the two nuclei (we ignote
the electron in doing this), we are lefe with the energy cigenvaiue equation

e!

#2 . I . ¢ P g
Ll gyt — — W — — _— - =0 -
( M 2m Ir— R/2|  |r+R/2| + 7 E) ¥(rR) =0

(20-19)
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ey
i-f Goulomb repulsion
R\ petween protons
Rn .—h R
[‘\\_Equilihrium
. : separation
136 ————————— e —_—————— —
Electronic
Bnergy
—54.4

Fig. 20-1. Contributions to “nuclesr potential.” The Coulomb tepulsion and
the electronic energy combine to give a corve with a minimum at Ry,

The st term represents the kinetic energy of the protons with -~
2
Mz + Mr 2

the reduced mass of the two-proton system. The second is the kinedc energy of
the electron. The next two terms represent the attmction between the electron
and the two protons located at R/2 and —R/2, and the last term represénts the
repulsion berween the two protons separated by a distance R = |R|. The
qualitative featutes of the solution with R held fixed, and the proton kinctic
energy term absent are shows in Fig. 20-1. For R vety large, the electron will be
bound to one of the protons, and the energy of the system is — 13.6 ¢V, the
energy of a single hydrogen atom. When R — 0, and we leave out the proton-
procoa repulsion, the elecron will be bound w0 2 Z = 2 nucleus, and the binding
" enetgy will be —13.6 Z* = —34.4 ¢V. The elecuronic energy, as a function of R,
interpolates smoothly between these points. When the eoergy or repulsion
/R is added to this, the curve &{R) results. This curve has & minimum for the
H;+ molecule. A minimum does not always cxist, so thatr some aioms do oot
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form molecules, as we shall soot see. The electronic eigenvalue equation, which
has the form anticipated in (20-3),

¢ __ ¢ ﬁ)
Hon(e.R) = ( w r-R72 wrERl T R )R
= (R} u(r,R) (20-21)

can actually be solved in elliptical coordinates, but we will ger mote insight from
using the variational principle, with tial wave functions thart reflece some physical
intuition about the system.

A reasonable trial wave function is a linear combination of

e R) = (fé)me""“‘“”‘“‘ | (20-22)
and
1 13 .
P R) = (TTO‘) IR /e (20-23)

tepresencing the electron bound ta one or the other proton. Since the Hamil-
tonian is symmeric about refiecrions in the osigin (p. = —por— —r,R—
—R), we may take as tria] wave functions even and odd combinations of chese?

¥o(tR) = CRWTR) + ¢:(rR)]
¥u(rR) = CARW(rR) — ¢a(r.R)] (20-24)

The normalization factors are given by

. . (s == | = )

¢t
=242 f P (e R) fa(r,R) (20-25)

The integral appeating above is called the srerlap infegral, and it can be calcu-
lated. The calculation of

5(R) = f ar yn(e R} ¢:(r,R)

1 —lr= _ ;
= _a[d:’. =B a0 |t R/2: e
Tz

L .
= ;-;:3 Aot o IF —RIae =7 fa (20-26)

¢ The labeling is histarical: "‘g"" stands for “gerade,” which means ¢ven in German,
and "o for “ungerade,” odd.
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is straightforward, though tedious, The result is

3B = (1 + —2— + %) g R (zo-27)

The expectation value of Hy in the two states is

Hlpw= m £ dal Hojdr &= ¥2)
1 .
= m [, Hal ¥} + (o] Hol 2} = | Halye) £ {a| Hol )}
i) £ GhiHble)
= 1L SR {20-28)

whete use has been made of the symmetry uader R — —R. The two terms in
the numerator can be calculated:

e (2o At )
wltow) = [aiem (25 - S~ SR R
X ;h(l',]l)
_ £ o JAEROL”
= B+ L’Ef""'|.--|-1t/'2l 202

The first term is just the cnetgy of a single hydrogen atom Ey = —13.6eV; the
second term is the proton-proton repulsion, and the third tzrm is the clectroseatic
potential energy due to the elecoron charge distribution about one proron being
attracted to the other ptoton. The last integral can be evaluated, <o that finalty

1| Hilyn) = E1 + £ (1 + -E‘) ¢ iR (20-30)
R e
Similarly
{,,',inH,}__fda “(ﬁ](ﬂ+i___‘;) R)
L _ T} = r1(r 1 2 Ir + R/2) Palr

- (El + %) S(R) — ¢ f g, AERIEER) 0

|e + R/2|
Here the las¢ term is the exchange integral, which can also be evaluated, yielding
R bRy ¢ ( R ) -
R L £ e Ll
f r ir + R/2| o + - ¢ (20-32)

When all of chis is put together, the resulting energies can be calculated as
functions of R. Figure 20-2 shows the calculated energies.
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Fig- 20-2. Results of vatiational calculation for Ha.

The exact salation, which according to the variational principle must lie
below the curves obrained, differs little from che minimum. In our apptoxima-
rion, we see that the even solucion yields binding, whil¢ the odd one does not.*
The difference berween the even and the odd solusions is that in the former, the
electron has a high probability of being located between the two protons, where
the atgractive conwribution is maximized; for the odd solution, which has 2 node
midway between the protons, the electron tends 10 be exciuded fram that region.

"The experimental separation becween the protons is 1.06 A, and the binding
enetgy is —2.8 eV. The calculations outlined above lead to 2 separation of L.3A
and a binding energy of —1.76 £¥. Thus our wave function is not a5 compact as
it should be. The reason is that whea R is small, the wave function should
appraach that of 2 Het ion, which (20-24) does aot, Cne could improve the cal-
culation by jotroducing an effective charge for the proton and minimizing
(Ho Ya with respect to thae parametes in addition to R, 23 in our illustration in-
volving the helium acom. Since we are more interested in 2 qualitative under-
standing of the problem than in improving the variational calculation, we do not
putsue this idea. ' .

2 (ine might worty that the wue £(K), lying below the (i) = Eu({R) curve, scll dips
down and gives & weaker bound state. Detmiled calculations show thar it does aot.
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The orbitals that we have considered do not depend on the azimuthal angle
about the axis of the molecule, Since the Hamiltonian 8 invariant under rotations
about the axis, we may classify the solutions by the angular momentum com.-
ponent aloag the axis. If we choose R to define the z-axis, our eigenstares will
be simultaneous sigenstates of L.. The solutions will, in geaeral, have the
dependence ¢ with » = 0, =1, £2, ... . These ate lzabeled o, =, &, . . . In
analogy with S, P, D, . . . . There is also the labeling 2" and "o which is
applicable to all diatomic molecules for which the atoms are the same (homo-
aucdear molecules). Thus in our example the ground scate could be labeled
L5y, and the antisymmetric state could be labeled 1w,*, the asterisk indicacing
chat che state is unbonnd. Excited states of the Hy™ mojecule may be formed
with higher orbitals.

We will not deal with the ratational and vibtational degrees of freedom of
the molecule except to note their 1oles in the two opics that we discuss next.
First we will be concerned with the effect of the Panli Exclusion Principle on
homonuclear molecules. Consider, for example, the Hy molecule for which the
twa nuclei are ideatical and each has spin 1/2, Thus the total wave function rust
‘be antisymmetric under the interchange of the two auclei. The two protons in
this example may be in the antisymmerric spin singlet {§ = 0) state, in which
 case the rotational state must be desceibed by a symmetric function, 5o that the
*angulatr momentum is even. If the two protons are in the symmetric spin wiplet

(5 = 1) state, the angular momentum of rotation must be odd. Ina gas, collisions
. among the He molecules will randomize the disuibution of spin states, and

. assuming that they have equal probability, the number of molecules in a given
spin state will be propertional to the degenemcy (25 + 1). Thus thete will be
three times as many odd L molecules as there are even L Ha malecules in che gas
This will manifest itself in the intensity of the spectral lines associated with the
transitions berween rotational levels. Mote generally, if each nuclens has spin 1
then the spin states 24, 2I — 2,21 — 4,. ..and the spin stares 21 — 1, 2 — 3, ..,
will have opposite symmetry. If, for example, I is an integer, then the firsc
series of spin states will be associced with even otbieal angular momentum,
since the nuclei are basons in this case, Their totzl number is

I .
3 lator — 2 + 1) = 41+ D+ D = T
A=0
=4+ 01+ 1) (2033)
wheteas the remaining .

I+ -+ I+ =0a+ 11 {20-34)

states will be associated wich odd otbital angular momentum. Thus for integral 1,
the mtio of even L to odd L intensitics for a given L is (I + 1)/ For fermions
thar ratio is inverted. )
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To a good approximation, the energies of the rotational states are

_ BLL+ 1)

P (20-35)

17
where 3 is the moment of inertia of the homonuclear molecole under considera-
rion. Transitions between adjacent L values (to conferm with the selection rule
AL — =1, stll to be derived) yield mdiation with frequencics

wil 41— L) %[(L+1)(L+ 2) — L{L + 1)

% (L+1) (20-36)

From the study of rotational spectra one can jdentify the rotational levels and
Fid their L values. The intensities then give a way of discriminating berween
even and odd spin. Historically, = study of the rotational spectrum of the N»
molkecule led to the conclusion that irs spin was even. This could not be under-
stood on the basis of a nudlear model in which the nitrogen ucleus consisted
of fourreen protons and seven electrons; such a nucleus would have odd half-
integrel spin. The discovery of the neutron, and the 1enlization that the nitrogen
aucleus consisted of seven protons and seven neutrons temoved the difficuley.

The existence of the hieraechy of excimtion energies, rotational, vibaa-
tional, 2nd electronic manifests itself in the form of the specific heat at constant
volume as a function of temperature, We take from statistical mechanics the
following facts. _

(a) 'The specific heat at consmat volume is given by

s
| Cy = Ny >T BT (20-37)

where E(T) is the average energy of 4 molecule in equilibrium at emperature T,
and Ng is Avogadro's number. . : ] :
(b) The average energy can be calculated from the Bolezmann distribution

f AEEg(E) e~ / f ABg(E) ¢ %5

= — __a__ —E/&T —EBrkT
=~ /AD) [ dFg(E) ¢ / f dEg(E) e

' o]
= KT log f dEg(E) ¢ 24T (20-38)

BT

i

where g(B) is the degeneracy of states with emgy E.
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(c) The average energy can be written es a sum of conuibutions from
independent degrees of freedom, so that we can write

E(T) = Eenas(T) + ErotT) + BT + . .. (20-39)
Por the translational contribution, whete E is the kinetic energy, we havet
a’S
—EAT _ P -ps2MeT .
f dEg(E) e f Gk ¢ {20-40)
50 thar
f AEg(E) ¢ FAT = crane (20-41)

as can be seen from dimensiopal considerations. Thus (20-38) yields

d D
- —_— ‘I‘! - ’TS.’!
Cv= Mo (5 S7lo8 ¢ )

bd

Nk

[ R

R (20-42]

where R = N;,.é = 1.98 calotie/mole K® This is just the Dulong-Petit result.
For the 1otational conuibation we have

f‘ng{B) ¢TEAT 37 pd2L + 1) g7 WLEADTT (20-43)

where g, is the spin multiplicity corresponding to the given L, and (2L + 1} is
the usual degeneracy corresponding to a given value of L. For the Hy molecule
we have the special situation mentioned before: the existence of pam- and
ortho-hydrogen, for which the nuclei afe in the spin states § = 0and § = 1
respectively.

For para-hydrogen, L is testricted to the even values, L = 0, 2, 4, . . . and
& = 1; for orthe-hydrogen, Lisodd, L = 1,3, 5, ... and g, = 3. At low tem-
peratures—and here “low™ depends on the momeanr of inerta, so that for H.
the relevant number is®

Z_’JE =848 K _ (20-44)

* For a discussion of the degenceacy of states applicable to free motion, see Chapter 22,
Section C.

i The moment of inertia can be determined from the spacing in rotatiooal spectra,
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__the F. = 0 state will be pritnarily occupied, that is, the gas will consist of para-
hydrogen.® At room emperatute the difference between cven and odd L's
becomes insignificant, and the ratio is determined by the ratio of the g, that is,
it is 3:1 ortho- co par-hydrogen.

In the rest of the discussion we shall, for brevity, ignore the complication
of the two forms of molecules. At temperatutes whete the rotational degtees of
freedom become excited we have

ﬁ”;'Z:!E 2L+ 1) L(L + 1) e—ntL(L+1g;zqrr
k] L
Erot = 2 2L+ 1) g""LmH}fl’_iﬁ:——— {20-45)
L

This can be evaluated numerically. At high temperatures, the levet-spadng is 50
small, compared to &T, that we can replace the sum by an integral, and use
{20-38). We have

f dEg(B) ¢ T ~ f A2l e o (20-46)

so that, using (20-38) and {20-37) we get, for large T,

a
{Cy)roat = EN, aa_T (T’ 'a—,]'_,log C"T) =R (20—47)

Ar bigher rempernatutes the yibiational states can become excited. The
harmonic oscillator potental in which the nucleus moves need not be sym-
metric. If the line connecting the two nuclei is aken in the z-direction, it is
plausible that the potential walls will be steepet in the x- and y-direction than in
the z-direction and thus in the expression for the energy

E= ﬁm,(m, + %) + ﬁ“y(”ﬂ + %) + ﬁ‘-"s{”l + %) (20‘48)

the first excitation will be from the ground state Ep = Y, + i, + e to
By = Ey + Fuy. Thus

'_g _ Ea E—Bu‘ﬂ' + E, e—&r‘ﬂ'
E_EW{'ET—[— e—Eu’iT

Ec|+ E] e—ﬁm,ﬁT
T T MRt

= F (1 + %;— c"“""’”) (1 - r‘“‘""’”)

= Ey + Fi, e 2T (20-49)

& Actually eansitions becween the ottho- and pasa-states are very siow, 5o that cooling
the gas is not enough tw make peti-hydrogen, In pmctice one usesa catalyst.
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Fig. 20-3. Specific heat of H gas as a function of tempetature.
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For H, the vibrational effeces do not set in vatil 600°K (Fig. 20-3). On the othet
hand, for Cl;, ficx, has quite 2 low value, and at room temperatute, the contribu-
tion of the fust vibratiopal level is ~ 0.5 R. In genetal w,, w, are quice a bit
lacger chan w, for diatomic molecules, and therefore the high energy contribution
of the vibrational excitations compured from

fS(E)  —EAT g E gt 1/ D/AT
na
~ f dg ¢ T TUDAY o prip (a0 51)

is R as for the rotaticnal levels. This is shown in Fig. 20-3 showing Cy for H,
The electronic levels only contribure at excremely high energies.
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Problems

1. In HQ 2 number of absotption lines with wave numbets (in con™)
83.03, 10373, 124.30, 145.03, 165.51, 185.86 have been observed. Are these
vibrational or rotational transitions? If the former, what is the charactetistic
frequency? If che lawter, what J values do they, correspond to, and what is the
moment of inectiz. of HCI? In that case, estimate the separation berween the
suclei, (In mdiation the quantumn numbets change by one unit.)

2. What is the ratio of the number of HCl molecules in a state with J = 10
ta the number in 2 state with J = 0, if the gas of molecules is at a tempeature
of 300° K? :

3. The frequency of vibration of the CO molecule in its lowest state i
7 = 2 % 101 Hz. What is the wavelength of the radiation emitted in the lawest
vibtations} excieation? What is che probability that the first vibrational state is
excited, telative to the probability that GO is in its vibrational ground state,
when the remperature is 300° K?

4. Consider the vibrational and rotational encrgy of 4 molecule in the
approximation
JU+n#

- .]. v —_ 2
EAR) = S mat(R = R +

. Find the position where the energy is a minimum. If the moment of inerda of
the molecule is calculated using the new internuciear separation, show that the
rotational energy can be wtitten.in the form

Er=AJJ+ D+ BJJ+DF+ ...
Detetmine the coefficients A and B (the lattet is the effect of centrifugal
disrortion).

References

Several elementary books that treat the matters in this chapter are listed at the

end of Chapter 21.
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Molecular Structure

In this-chapter we discuss, albeit only qualitatively, how the electronic
structure of molccules determines their shapes and ather ptoperties. We begin
with the Hy molecrde, and discuss it in some detail, because there are two cleccrons
(in contrast to the Hs* moleculc) and the exclusion principle and electron spin
considerations make theis first appearance. Both hete, and in the rest of che
chapter, the nucleer motion will be neglecred.

The nuclei {(protons) will be labeled 4, B and the cwo electrons 1" and ™'2”
(Fig. 21-1). The Hamiltonian has the form

e ¢ :
H=H+H+ —+ — (21-1)
iz Rz
where
: R 2
=2 _ S L G- (21-2)
2m Fai T8i

depends only on the coordinares of the electton i gelative o the nuclei. We will
again compute an upper bound to E(Rus) by constructing the expectation value
of H with a trial wave function. Since

fi=H+— (21-3)
Rap .

A Raz . B

Fig. 21-1. Coordinate labels in che discussion of the Hz molecule,

527
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are just Hamiltonians for the Hy* malecule (Eq. 20-21) it is suggestive to mkeas
our trial wave function a product of cwo 15, functions (Bg. 20-24) for che Hy*
malecule:

Valrors) = i : [Wales) + $alr))] [Walrs) + ¥alrs)] Xs-in.:let (21-4)

1 + S(Raz)]

The election spin state is a singlet, since the spatial pare of the wave function is .

taken 1o be symmetric. In this wial wave function, cach eleceron is asmeiaied with
bath provons, that is, the trial wave function is said to be a produce of molecular
orbitals. The description in terms of molecular otbitals is somerimes called the
MO method.

The calculation of {f,|H|¥,} yields

~ e - £ # &
(el (B + (=) + i)
' 2
= Rap) + «Rup) + (J‘g — llfg) - Zan
e’ 2
= 2¢{Rup] — o + (\"u — %) (21-5)
AR st

where e(Ruz) is the enetgy of che Hy* molecule calculated in Chaprer 20. The
first otder elecmon-electron repulsion conwibution can also be calculated, and
when the total energy so computed is minimized with respect to the separation
Rua, it is found that the binding energy and internuclear separation are given by

Bu= —2.68eV
R= o084 (21-6)
The experimental values are ' '
Ey = —4.75¢V
R= 0744k | (21-7)

Evidently the approximation is not a very good one. We noted in out discussion
of the Hat molecule that the trial wave functions (the M{Fs} are inaccurate for
small proron-proton separations, and the fact thar the MO's are oo spread out in
space shows up in the numbers above. The wial wave function also has some
undesirable features for large R4p. The product in (21-4) may be rewritten in the
form :

[falry) + ale )| [(Palrs) + Pulr)]

= [PalE) Yales) + $alrs) ale)] + [Paled ¥alrs) + a4 (ra) '.I‘B(rl}l
. : (21-8)
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The first tero is called an “'ionic” term, since it describes both electrons bound o
one proten or the other. The second term, the “covalent™ term, is a description
in terms of linear combinations of atomic orbitals (LCAQ). Our trial wave
function thus implies, since the two teems enter with equal weight, that for
large Rz the molecule is as likely to dissociate into the ions H* and H-, as it is
into two hydrogen atoms, and this is patently false.

The last difficulty can be aveided with the use of the Valence Bond (also
called Heitler-London) method, in which linear combications of atomic orbitals
are used. The singlet wave function used as & trial wave function in the varia-
tional principle is raken to be

1 1%
Pe,rm) = Iml [@alrs) ¥a(ra) + yalrs) $alr0] Xoingn  (21-9)

where, as before, the 4(r.) are hydrogenic wave functions for the f-th electron
about proton A. We could, in principle, add 2 wipler term to out variational
aiz] wave funcdon. However, a wripler wave function must be spatially anti-
symmetric and has low probability for the electzons being tocated in the region
between the ptotons. We saw in our discussion of the H;™ molecule thac just this
configuration led to the lowest energy. Although it is not immediately obvious
that the atraction is still largest in this confignsation when there are fwo elec-
trons that repel each other in the system, it is in face so. The tesules of 2 vatia-
vional calculation with the ¥B trial wave function is

By = —3.14eV
R= o087k {21-10)

This is poc 2 significant improvement over the MO results, fot the simple reason
that the inadequacy of the trial wave funcrions for small Rip carmies more
weight. There should be no question about the quantiacive successes of quan-
tum mechanics in molecular physics. More sophisticated trial wave functions
have to be used; for example, a 50-term trial wave function yields complese
agreement with observations for the Hy molecule, bur it does not, a5 the MO
and VB functions do, give us something of a qualirative feeling of what goes on
between the atoms. In what follows, we will explore the relevance of these
approaches to & qualitative understanding of some aspects of chemisury.

- The expectation value of H for the Hz molecule in the ¥'B approach has
the following schematic form

_ . _
i HNY = D) paer + drastm | H|padps + dbasks)

1 . : 13 r e, T

= 1_|_.S,<'mem (Txrl* Ty — — - -

a Fag 51 4 1}
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In obtaining this, liberal use has been made of symmetry. The rerms that can
make this expression more negative are
\hn)

(lhll-;—l v'm) and 1 _i S’( it

The former is just the atwaction of the electron cloud about one peoton to the
other proton; the second is che ovetlap of the two electrons {weighted with
1/721). I this can be large, there will be binding. The two elecrrons can only
ovetlap significantly, however, if their spins are antparallel; this is a consequence
of the exclusion principle. The region of ovetlap is between the two nudei, 2nd
there the atttaction to the nuclei generally overcomes the electrastatic repulsion
between the electrons.

In the MO picture, 100, it is &n overlap tetm—the last term in (20.31)—
that is crucial to bonding, end again, bonding occurs because the electron
charge disuibution is large berween the nuclei. Thus, although hete the otbitils
belong to the whole molecule rather chan to individual atoms, the physical
reason for bonding is the same.

We will discuss some molecules in terms of these two approaches to the
description of the elecrronic charge distribution. An imporrane simplification
oceurs because we really do not need to ke all electrons into account. In the
‘consceuction of orbitals, be it valence or molecutar, only the outermost eleccrons,

1

el

1
Fal

- 2:’5( AL

1
fa1
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(Do - (OH)o

Arom with
paired efectrons ()

(e - (1)o

th)

Fig. 21-2. ustration of why paired electrons do not give rise to bonding. (a) f
parallel dectrons exchange, wave fonction is spatially antisymmertic. (3) If anni-
patalle]l electrons exchange, one term in the wave function has electrons in the same
spin stats, which may requite promotion to a higher encrgy orbital.

oot in closed shells, chat is, the so-called vwlence elecrvass have o chance o con-
tribute to the bonding. The inner electrons, being closer to the nucleus, are less
affected by the presence of another atom in the vicinity.! Furchermore, not all
valence electrons coatribute equally: if two electrons ase in a spin 0 stace—we
call thew paired elecivons—they will mot give rise o bonding. To see why this is so,
considet what happens when an atom with a single valence elecuron is brought
near aer atom with two paired electrons. There are two cases to be considered
(Fig. 21-2). -

{a) If the two electrons that are patailel exchange (i.e., are put into a form
such as {21-9) with a = sign between the terms) then chey must be in a tripler
state, and hence the spacial wave function of this pair must be ancisymmerric.
This reduces the ovedap, and it turns out chat the exchange integral gives 2
repulsive contribution to the energy.

{(b) When the rwo electrons thar are antiparallel exchange, then one atom
finds itsclf some of the time with two electrons in the same spin saate. The

11t may happen in atoms that even the valence electrons are rather close to the
nucleus. This is the case for rhe rate eacths. A consequence of the fact that the outer electrons
in 54 and 4f shells lie close in is that the mre carths are chemically less active than the wansi-
tion memls {Z =~ 20 — 30k
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otiginal atomic state will frequently no longer be # passible one, and one of the
electrons will have to be promoted inco another atomic orbiral. Sometimes this
may cost very Jittk energy, bue nsually this is not the case, and again bonding is
ot achieved. Chemical acrivity depends om she presence of unpaired outer elertrans. An
example of this is the nonexistence of the H-He molecule. In He we have two
electrons in the 15 state; promation of one of them into 4 2r STATE COSLS A lot of
energy. It is for this reason that the atoms for which the outer shells ate closed
ate inert, Mot all unpaited electeons are of equal significance. As nated before,
the unpaired 4- and f-electrons in the transition elements tend to be close to the
aucleus, and hence inactive. Thus, mainly s- and p¢lectrons in the outer shells
contribute to chemnical activity. The pairing effect is also responsible for whar is
called the “‘satutation of chemical binding forces™: once two unpaired electrons

(a} 1))

+

x
{c} i}

Fig. 21-3. Pictorial representation of shapes of («) the sorbital, {8) the pA(Yu),
(#) the pu(tn — Yi. ), and () the p(Yu + Y1) orbitals, The signs refer o
the signs of the wave function in the given regicn.
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from different atoms form a singlet stare (and cause bonding), they become
paited; an electron from a third atom must find an unpaired electron elsewhere,
that is, participate in a different bond. Another consequence is thar molecules
have spin 0 ih most cases, _

Let us next go through a process analogous 1o the building up of che
electronic shells in atoms. Io Fig. 21-3 we show pictures of acomic orbitals, in
particular the 5(Y o} orbital and the p-orbitals. For the later the linear combina-
tons pAY 1 + Y1) and pf{¥y; — Yy _y) are plottccl in addition to p{¥10).
The cottesponding d-otbimls, dvy, 45, 4y 4oy and diz — d,, ave not shown,
because the d-electrons will play no rele in our discussion. Figure 21-4 represents
what happens when atomic orbicals are brought together and exchange occurs.
Thus, two 15 atomic otbitals may combine into & spatially symmetric MO (hence
with spin 0} ot into a spatially antisymmetcic M, which is antibonding since the
wave function berween the nuclei is small. Similarly, the formation of bonding
apd aptibonding MO's with p-orbitals is illustrated in the figure. Note that
{2) the patity “g"” or "u” can be read off from the figures, since chese indicate
the signs of the wave funcdons; the distributions that change sign upon re-
flection in the x=y plane, hete teptesented by a vertical line, ase odd; (B) since the

. 2nd p-orbitals have m; = £1, the molecular orbital formed from them is a

w-orbital. It should be stressed thac in the figure we are mof just bringing two

- charge disuibutions together, but are trying to suggest the probability amplitude

that resuks when wave fupcrions aze combined, that is, the MO's such as
Pua(ra) £ ¥u{re:) and Yoy (r,) == &y (re) for Rap large and for Ryp small.
We can use the MO's w discuss the properties of a few diacomic homo-

nuclear molecules:

Hy. This molecule was discussed in some detail. We merely repeat that the
two electrons can go into a 1ss, MO, and since this orbital has a lower energy
than the separaced 1s atomic orbicals, there is smbilicy.

Hez. OF the four electrons, only two can go inte a bonding 1ss, orbical;
the other two must fonm an antibonding Le,* orbital. The net encrgy is grearer
thzn that of the separated He atoms, so that no melecule is formed. In terms of
the Valence Bond picture, both atoms have paired electrons and the conclusion
is the same, In generl, electrons in bonding orbirals and in antibonding otbitals
tend to cancel each other cut. Since there are two clecrons involved in a full
bond, we may speal of a bond number, given by

Bond _ 1 Electrons in  } Electrons in
number) — 2 | \ bonding orbitals antibonding orbitals
This number vanishes for He,.

Liz. The atomi¢ structure of Li is (19%(25). Thus, the 2 elecuons are
unpaired, and they can form 2sr, bonding orbitals. We thus expect the molecule



(d)

Py

Fig- 21-4. Molecular orbitels resulting when two atomic orhitals arz brought
togethet. () Two s otbitals combine o form the spatially symmetric MO gp thac
gives fise to bonding; (5) Two s otbirals combine to form the spatially antisym-
metric amibonding MO vx®. () and (4) show bonding and anobonding with py
acomic orbitals; (¢) and (F) show bonding and aatibonding with 25 orhitals. The
z-axis is along the line connecting the nuclei, which are represented by black dots.

334
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Fig. 21-4. continued

o exist, but because of the # = 2 value of the orbital, we would expecr the
binding to be sipnificantly smalter than for the Hy molecule. :

Be;. Here the atomic structure is (17)%(25)?%; there zte no unpaired elec-
trons, and hence we expect no molecule w exist. This is indeed so.

B.. The atomic structure indicates that thete is an unpaired 2p electron in
cach atom. Tt can be in any one of the states 2¢-, 2p,, and 2p,.. They may com-
bine cither inta a 2pary or inwo a 2po, MO The former has a lower cactgy, so
thar hete the ground state is a tripler, This is i agreement with Hund's Rule:
The state with highest multiplicity has the lowest energy.

The reason why 2po, bas a higher epergy is thar there exist 2, orbitals.
Whenever thete are stanes that have the same quaptom pumbers, “mixing”
accurs, and staces that are almaost degenerate tend to repel each other. The state
‘that is lazgely 2pe, is pushed up. We begin to see the appearance of complica-
tions similar to the ones thar appeared in our discussion of atomic structure!

;. The atomic strucenre is (1)2(20%(2f)%, that is, each atom has two
unpaired elecerons, Since each eleccron can be in any one of three # states, two
bonding MO's cen be formed. The MO description tumns out ta be (2ps,)(2px.).
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N.. Here dhe situation is very similar to that of C; except that theee bond-
ing MO's can be formed. The MO description tutns out o be (2pa,)(2pa)®.

O;. Here things get a little mote interesting, because the atomic structure
is (10*(2:)*(2p)*, that is, there are four valence electrons. In terms of moleculac
arbitals, three bonds, as in Mg, can be formed, but this leaves two clectrons that
cannot possibly form a bonding orbiral. Whar is the least harmful antibonding
othiral? The two electrons should avoid each other as much as possible, and this
can be donc by means of a aipler scate, with the electrons in orthegonal orbitals,
for example, one in a p,, the other in & p, state, with the two spatially and-
symmettized. In this case the spin of Oy is 1, an exception to the strong tend-
ency toward zero spin that was mentioned earlier. -

In the Valence Bond pictute, two of the four valence electrons in oxygen
must be paired, so that two bonds will exist orthogonal to cach other, as px is ta
s, for example. One may sce the cffect of this directionality in a molecule like
H+O. Bach H uses up one bond, and we would expect the shape of the molecule
1o be an L with 90° between the equal length arms. Actually, the rwo hydro-
gen nuclei tepel each other, and one might expect the angle to be a livde larger
than 90°. Experimentally it is around 105°! Itis the directionality of the p-otbials
that explains the shape of simple melecules.

Lest the reader feel that all of chemistry can be understood with the ma-
cerial at hand, we will point cut just 2 few of the many complications that show
the subtle scutces of the incredible variety in the structure of macer, For ex-
ample, o cacbon atom has two valence electrons, and one might expect a CH
molecule, with 4 shape simifar to the H;O molecule, to exist, Actually, C tutns
out ta be tetravalent (four bonds) rather than divalent, so that it is CH, that is
actually formed. The reason is that although the ground state of C is
(16)2(25)2(2p)?, the excired stare {15)*{21)(2p)" differs very little from it in encrgy.
This stace, however, has four valence elecrens, and the molecular bonding with
four bonds is sufficiently stronger chan that with two, to compensate for the
elecuonic excitation energy. Mare precisely, the near degeneracy of the 2sand 2p
states in che acom allows the formation of linear combinations that allow larger
ovetlaps. Figute 21.5 shows that a linear combination of an ;- and 4 p-orhital
gives a lopsided wave function allowing an increased overlap. This “mixing™ is
actually quite common. We may give a mote decailed description of the water
molecule by working with Aybrid orbitals that involve - and p-otbicals. If we
ignote the difference between the 25 and 2p electrons in oxygen, then we must
really deal with the more general states

@ = oaP%s, + 8960, + 8902, + B2 (21-12)

with the coefficients constrained by

K X0y = 5y _ (21-13)




Molecular Structure 337

Fig. 21-5. Combination of s and p. orbitals leading to unsymmewic wave func-
tion

rather than with gy, dhg,, 2, &0d $op, and maolecular orbinals or valence orbitals
constructed for use as eriz] wave functions in the variational principle should be
made up out of the x's. The minimization of the energy will determine che
coefficients o® and F, For the H4O molecule, it turns out that the four ortho-
noimal combinations are

X =—ﬁ(¢”+%+m+w
x® = Vr(%-l-m #2, — P21.)
x& = \/— (o — d2p, + g, — D2p)

X0 = 7 (= o — b + ) (21149

Consider now the 10 electrons in HyO. Two 15 electrons remain strongly
bound o the oxygen atom. (One could, for consistency, describe them in terms
of 1, and Lir, MO's, apalogous to the Hz+ molecule, bur this chamges nothing.)
The remaining eight clecttons go, two each, intc the hybridized orbirals
¥®, . ., x®. The geometrical shape of the molecule can be determined from the
form of these hybrid orbitals. If we try 1o draw what x™ looks like, we see chat
the last three tetms are all negative in the octant (x, 3, z < 0) and there they
effectively cancel the s term. Roughly speaking, 2 looks like a fat cigar point-
ing from the otigin to the point (1, 1, 1). Similarly x™ points from the otigin o
the point {1, —1, —1), and so on. The shape is a tetmhedron, and some simple
geometty shows that the angle berween che bonds, 4 satisfies sin /2 = +/2/3
so that # 22 109°. Without hybridization we found the angle to be 90°, and the
truth lies somewhere in between. In more accurate caleunlations, (21-14) is
soméwhar modified, so that only three of the four crbitals are so pronouncedly
“p-like” and the remaining oebira) has less directionality, that is, is more “'s-like".

‘This more detailed picrure allows us 10 understand some of the properties
of water. If we think of the water molecule as oxygen, with fout tewrahedrally
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oriented arms thar are charged, with protons, from the H’s attached to twa of
them by Coulomb forces, we first of 2l see that the water molecule may be
expected 1o have 2 large dipole moment coming from the two negatively charged
arms pointing away from the proton. We recall (cf. Chapter 16) that a ground
state can only have an electric dipole moment if it is degenerate. We casily see
that since the ¢s, change sign under reflection and the ¢ do not, the x** are
not eigenstates of parity. The reflected orbitals, for example,

X = _1—4 (o — 25, — Pap, — d2a) (21-15)
have exiody the same energy and the reflected shape. The ground state 15 there-
fore degenerate, and 2 dipole moment an exist.

When water molecules get close to each other in & liquid, the negatively
charged arms of one may come close to the proton of another, The electrostatic
atccaction berween the two will lower the energy, and there will be 2 tendency
for the two molecules to bind. The bond is fairly weak (0.2 eV) and is called 2
hydrogen bond. Bach water malecnle can bond four other ones at once, and one
thus expects to find large clusters of water molecules in the liquid, effeceively
molecules of the form HeO,. This leads ¢o 2 strong temperatute depencdlence of
the viscosity of water. In cold water, the large dusters easily tangle together;
heating the warer breaks them up and reduces the size of the clusters and hence
the viscosity.

Magay other molecules also form hydrogen bonds. This is how the prooess -

of dissolving works; water molecules form hydiogen bonds with the substance,
and the molecules of the substance would rather stick to the water molecules
than o each other; the substance dissolves. Oils do not form good hydrogen
bonds and thus do not disselve in water. '

Not all hybrid orbirals are of the form (21-14). CH, /s tettahedml, and in
fact the bond angle is 109.6°, but in CsH, the molecule has a planar scructure,
It tuens out that for this molecule, the ‘catbon otbitals are hybridized as follows:

o = g
x? = — ¢ + \F P2pa
V3 3
@ g — L 1
X "\/;(5!4 v,@@p.‘l’\/zﬁp,
W = i. —_ _1-— 1 .
X = V/g bz '\/E by, — 7’5 P25, (21-16}

The first one points along the z-axis, and the last three are oriented at 120° .
intervals in the x-y plane, The four cuter electrons in carbon [specifically,

(2:)%(2p)9] go into these orbitals. Given two carbon atoms, the two electrons in
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Fig, 21-6. -Bonds in the C;H,; molecule.

the %™ and x"¥ orhitals bind to the hydrogens, while those in the x'V and '
states form bonds to the other carbon (Fig. 21-6). The clectrons in the x® state
form z ¢ bond berween the carbons, while the electrons in the ¥ state, being
at right angles to the bonding axis, form 2 # bond, It is these bonds dhar force
the two p, orbitals to be parallel, and thus make che rest of the serocrare planar.

As 2 final comment, we note thar in the so-called “aromatic” compounds,
for example, benzene, we cannat speak of such well-localized orbirals. The
carbons are hybridized as in Cot; and they form a plapar structure, with the p,
out of the plane (Fig. 21-7). The s-orbitals form & core, buc the x-orbirals can be
© paited according to (12) (34) (56} or {23) (45) (61), both of which have the same
epetgy. As usual, linear combinations of these degenerate possibilities lower the
--enetgy, so that the stable state does not have Jocalized orbitals. This additional
exchange effect strongly affects the physical properties of the compounds, but e
discussion of these would carry ds too far afield. For more information, the
reader should tarn to books on quantum chemisay.

. Fig. 21-7. Schematic picture of Benzene molecule (CyHo).
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chapter 22

~ The Radiation of Atoms

_ In the study of spectra, that is, the study of transitions between atomic
Jevels accompanied by the emission or absotption of radiation, one is interested
' in the interaction between atoms sad the electromagnetic field. Since the radia-
tion feld oscillates, it is time dependent. It is cherefore necessary to stady the
effect of time-dependent perturbations.

A. Time-Dependent Perturbation Theoty

The problem is, given the complece set of solutions to

Hopn = Ed (22-1)
to solve for (£}, which obeys the equation
220 _ vl (222)

The standaed procedure is to expand ¥{#) in 2 complere set of states:

W)= 2 e g, (22:3)
The time-dependence associated with che ¢, is explicitly taserted in the ex-
pansion, so thar if (7} = 0, the g(#) would be constants. The expansion

coefficients r.{y) satisfy a set of equations that may be obmined by substituting
(22-3} into the time-dependent Schrddinger equation (22-2), We get

)_j. l:ifc @;ﬁ + E,ﬂc,.(:)}"'ﬁ"""’ Y o = (S

- ; [E.ﬁ + W(:)}.(x)- BN

341
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that is,

i 'L:,{f,:'-‘i‘)r‘"-“" $. =22 Va5 g, (22-4)

Taking the scalar product with ¢, aod using the otthoncrmality of the ¢,

{Paldha) = Bmn (22-5)
yields, after the factor ¢ ="/ i3 divided out, the set of equations

i+ f',f;“i:) =) E Cﬂ(f) ¢ Bt =M/ ki {¢“| V{’)l¢n) (22-6)
We shall solve these to fies¢ order in the parameter h. As an initial condition at
# = D we take the system to be in a particular state ¢, so thac $(0) = ¢;, t.hat is,

m(l}) = bu IR PO {zz 7

Since departures from these values at latcr times will depend on'), we may, fora
first-order calculation, substitute the above into the right side of (22-6). This
yields the differential equation (for m  #)

J"(’) = N IR (4 VL) e} (228)
which is easily solved
() = % f L FTEA G V) ) (22.9)

‘The probability that ac a later time #, the state ¢{#), is an eigensmte of Hy with

energy E.,' that 1s thar it is ¢ is, accotding to thc cxpansmn postu]ane

P = | {al¥t))|? = |l (22-10)

This general result can only be tmade more spaaﬁc if V(i) is known. The pet-
turbation will be specified pext.!

B. The Electromagnetic Interaction

) The Hamileonian describing the interaction of an electron in a static
potential F{r) with an clectromagnenc field described by the vector potential

Afr#) is given by

H= [p + (/) A
Zm

1 Actually, more caa be said if it is known thax either P{) varics very slowly ot chi.ngves"- o

very mapidly compared to the cypical frequendes (e.g., E.%/4) in the systei. So-called
“adiabatic” end “sudden” approximations are discussed in more sdvanced texts.

+ Vir {22-11) _
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as we saw in Chaptet 13. Thus, if we write

He = b + F(r) {22-12)
2m
we find thae
A = — A@)p (22-13)
. e

In obtaining che last expression we bave specified the gauge sa that
v-Alrg) =0 (22-14)

Under these citcumstances, p-A = A-p, and we have dropped the term quad-
ratic in A(xs). If we trear e, the electron charge as the parameter of smallness ),
then the A® tetm is a second-order temn, We will see that the A* term will
coneribute ta the scattering of light by an arom and to the transition with the
emission of two photons, but it will net contribure o the trapsition accom-
penied by the emission (or absorption) of a single photon. The probability for a
" teansition involving two photons involves 2 factor (¢*)?, whereas the one-photon
- transition probability is propottional to ¢%. Recalling that the appropriate dimen-
sionless number involving # is & = ¢%/fir 22 1/137, we ate justified in concen-
- trating on transitions that are accompanied by the emission of 2 single photon.
To give a real justification of the association of each Alr.f) with the
emission or absotption of a single photon—so that higher powers of ‘A(r.)
imply the presence of more photons—one must treat the electromagneric field
" quancum mechanically, that is, treat the fields at each point ras operators. This is
fundamentally not terribly complicated, but it is cutside the scope of this book.
'The reader will have to ke the following assertions an faith,
' Il we wtite

Alr) = Ayr) & + Aofr) ™ (22-15)

then in che emitrion of @ photon, only the first rerm, wich the time dependesice ¢,
is to be included in AV{2), whereas i m the zbwrption of a photen, only the second
term, with the rime dependence ¢~ appears. This is 2 consequence of the
genetal association of Ag(r) with the creation of a photon and Ay} with the
annthilation of a2 photon, and the time dependence is just what one would
_expect from che harmonic oscillacor (7-51). The resemblance to the harmonic
oscillator problem is not acadental, since in the quantization of the elecuo-
magnetic field, what is done is 2 normal mode decomposition, according to
which one finds that the field is really a colfection of simple harmonic oscillacors;
" these are then quantized. The “oocupation number” # that labels the harmonic
oscillator state vector may be associated with the number of photons, hence Ag
maises the photon number by unity and A, lowers the photon number by unity.

The more quantltanve description of Aj(r) and Al(r) aeed not, for-
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_tunately, involve the full machinery of quantum electrodynamics, We may use
comespondence principle atguments 1o find these quantities, and then just state
the quantum mechapical modifications. Away from the sources, the electio-
magnetic field has a very simple spatial behavior. If we look back at (13-12)
and substitare (22-15), we find that

2
—VAq(r) - i:;—k,{r) =0 (22-16)
whose solution is
Aolr) = Age " (22-17)
with
-
k= ”T (22-18)
L4

The choice of gauge (22-14) implies that
k-Ao =0 (22-19)
The electric and magnetic fields comesponding to this vector potential are

1 OA i ;
E= — T = 1—:}’;&, £ + complex conjugate

B=vXA=ikXA /®""® | complex conjugate  (22-20)
Now the energy density of the electromagnenic field is given by

oy

3
= As-Ag+2(k X Ay (k X Ag) +osduamgcwq.s]
(22-21)

1 o _ 1
s;fmw)-.sﬁ[z

If we average over time, so that the oscillating terms drop out, and make use of
the fact that with {22-19) '

(k X Ao)-(k X AN = £24,-4g T (22-22)
and that 22 = !/, we ger

ll’z L
ol Aa-Ay (22-23)

1 (B’ + BY) =
S

If. the system is enclosed in a box of volume, ¥, then the toul energy in che
elecromagnetic feld is

1 WV .
_fd‘rST(E*+B*) = ﬁ"*"' (22-24)
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If this is to be carried by N photons, each with energy fiw, we have

wiV
2mct

tAp? = Nﬁw {22-2%)
“The direction of Ay is determined by the polarizacion of the electric field, and
will be denoted by the unir vector e, It must satisfy

=1
ck=10 (22-26)

 We therefore obrain

ardNEN\YE
) ke —oi) (22-27)

€e
wl

The quantum electrodynamic medification is the following: Fot the ebsorption of 2
light quastum by a charged particle from an initial state that already has N

Alr) = (

" photons of frequency «, -
e N\ 12 N
Alrg) =( ) g g fkw—on (22-28)
wl”

For the emission .of 2 light quantum by a charged particle into a final state that

has N 4 1 quanta, chat is, from an initial state with N quanta of frequency w,
SN+ 1R ;
Afrg) = [l—t—w-'!i] g g ~HeT—eD (2229}

Hence for the emission of a single photon of frequency from 2 state that has no
" photons, we have, according to (22-13),
Znaﬁ)‘f"

= oy p— T —w) R
}sp'(:) ‘( "o epe (22-30)
Heance .

2%, . I L
mﬁ :V) $ule™ z-plék)fnd:’e"" Benadf A (22.31)

and thus the probability of transition from the initial state # to the state m is
given by

I n(‘)

2
Pyonlf) = %V T aeplés)|t f : dy fEa R/ (22-32)
’fhe time-dependent factor is
a’“— 1 2 : .
U’ t#,e.ml ( )| -II’MI sm%’ = %sin’;‘-;— (22-33)
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%2

~br —dg —2% a 2 Az Gx A
= a
Eig. 22-1. Plot of the functon 1/A% sin? /4,2 versus 4.

where
B — B+ Fw

% {22-34)

Figate 22-1 shows the behavior of this function. For latge # it becomes strangiy
peaked at A = 0, and away from 4 = 0 it oscillaces very rapidly. This is the kind
of bebavior that we associate with a delra function. In fact, if fA) is a smooth
function of A, then, for r large

f fa) -“—sm’-‘idﬂ = f{ﬂ}f dﬁ. — sms i;
= 24(0) f-,,, 0 sin® y = 2¢£f(0) {22-35)

that is, for ¢ large

% sin? ’—2 > 200 HB) = 2RSS + o — B) (22:36)

Thus the transition probability in (22-32) prows linea.rly with time, and hence )



" ‘The Radiation of Atoms 347

the transition prabdzih'zy per unit Sr'me is

Ly Zrﬁ H-h...le"’”z plée)|? 8(EL — En0 — fics) (22-37)

For gencta! purposes, it will be useful ta remember that if the time-dependent
petturbation is of the form

Vi) = vre ™ (22-38)

. then the formula for the maosition rate is
2 .
Taon= 5 ||V i0)? 8B — Eu? ) (22:39)

As things stand, the feader undoubtedly feels swindled. Firse of all the
manipulations involved in (22- 33) (22-36) cemuinly are not straightforward.
‘They involve vague notions such as "'71arge,” which cannor be taken too seriously,
since 2 tansition hrobability chat grows lineatly with rime must sooner ot later
exceed unity. Secand, they lead to a nonsensical formula, according to which a
perfectly reasonable quantity, like the trapsition rate, is ptopottional to & delra
function. Needless o say, the difficulties are connected, and we will later
outline & more satisfactory discussion. At this point we merely note that the
fault lies in the use of percurbarion theory, and that both (22-37) and (22-39)
are conect, if properly used,

For this, we note that ['y ., is teally the iransition probability per unit time
Jer the atom making o transition from the stalt ¢u 7o ihe sate §n, accompanied by tha
emiuion of & photon of energy . The delra function, unappealing as it is, does cell
us that energy must be conserved, char is,

B = E* -~ E,? (22-40)

The delta fuaction is acemlly integrated over, if we wke into account that the
photon energy fiw does not uniquely specify che photon state. The photon will
in general be detected in some momencum incerval (k, k - Ak) in the vicinity of
{kj = w/fe, and the transition rate that is measured is really

= ; Tiem (2241)

summed over all the possible photon states in that interval. Note that the various
final stuces in the interval Ak sre in principle distinguishable, so thar it is the
probabilities that are summed, We will see that the sum (22-41) is well defined,

since, in effect, it involves the intepral of 2 delea function and a smooth funcnon

. "The summation will b= treated in the next section.
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C. Phase Space
We will now calculate the number of phaton states in the momentum

intetval (k, k + Ak), that is, the density of photon stares. For the purpose ac
hand, we write the vector potentiat A(r,2) in the form

1 .
AlrS) = -\7-? a g’("f"“"} + complex conjugate {22-42)

whete I is the volume of the enclosuse in which the calculation is dome, This
“box" js just a convenience to save us the crouble of working with wave packets
for the free particles (the photons, hete—cf. Chapter 4). Its shape and the condi-
tions at the boundary may be chasen at will, but it must be lagge. Ar the end, we
will nke 7 — . We will find it conventent 1o take the box ta be a cube of
side L, and to impose periodic boundary conditions, that is,

Alx+ Ly, 2,0 = Alx, 3, 2,0 (22-43)

and so on. This implies, just as in the solution of a particle in a2 one-dimensional
box, that the wave numberts, that is, the moments, are guantized. The form
(22-42) requires that

o kel _ gl _ L _ (22-44)
thar is, that the wave numbers be of che form

2 .
§.=—Zn. b= X k= (22-45)

where 7., ny, and 5, are integers. We also have
Ak = Ak, Aky Aky = (271'-)3 An Any An, ) (22-46)
and
w ¥_Iklt = %ﬂ(ms’ + a2+ 2t (22-47)
", When we carry out 2 sum like that i (22-41), we sum over all values of (., #,, m)

in the range specified by (22-48) consistent with the constraint of the delta
function. Thus
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{22-48)

In the second line we made use of the fact that as I becomes large the scates
_become veiy dense, 2nd the sum can be converted into an integral; in the third
line (22-46) was used, and in the last line, the relation

p=rhk {22-49)

was used. The integearion is over the volume in momentum space defined by the
expesimental arrangement. If we wtire

dp = d, pPdp = dlly (%) d (%) e (22-50)

where 4Q, is the sofid angle differential, we find that the energy conserving delra
function is integrated over and the result 13

41rge _iker V
Rpsz = l (¢M|’ * L P|¢*}| dnp (2 ﬁ‘):
X o "'(ﬁ“’) HES — Bt Fi)

o 1 —rh-r . |

= | dy— wum| — Bale™ T e-plos) (22-51)
27 me

where
E L - uﬂ

Wi = “—-};E— (22.52)

If ¢he experimental spparatus does not discriminate berween the polarization
states of the photon, the rate calculation must include a sum over those two -
independent final states. Purthermote, the sum should also include all the finat
states of the atom, This will be discessed in a later section.

The phase space

_Vdp

(2rFi)?

is not restricced to phosons. Aa electron that is free is described by the plane

wave function 1/v/F ¢* ™ and it will have the same density of states, ‘The only

difference is that the telation between energy (which appears in the delsa func.

- tion) and momentum is B = p?/2m [or, relativistically, E = (pc* + m®e) 18]
instead of E = pr.

(22:53)
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If we have several free particles in the final scate, the densicy of srares is
the product

H Vﬂr‘pk
(2ehy
‘The expression (22-48) combined with (22-39) then generalizes to

_ 2_1" Vi |2 0 — o
Riy= .hfmd H 155 | M| 5(Ef + ?Ek B ) (22-55)

Mmorness

(22-54)

where M;; is the mattix element of the perturbation berween the tairial and final
sces of the unperturbed system. The delra funcrion again expresses energy
conservation, that is, the energy carried off by the free particles is equal to the
energy change in the system, and the insegration is over independent momenta. Thus,
if a system decays into three particles, there are onfy two independent momenta,
since the thitd one is determined by momentum conservation. Note, however,
that the product of facrars in (22-54) is over il the particles in the final state,
that is, it involves I~ if thete ate n particles in the final state. Equivalently we
could write (22-55) as an integral over ¢/f momenta, with & debre funcrion that
includes a statement of momentum conservation. The reason that sach a delta
function did not appear in our detivation is we ate dealing with atoms that are so
much more massive than the photon (precisely M.iom 62 33> hw} that the atomic
recoil nevet entered into the calculation, At any rate, the result

21r V &p:
[ U (2xfi)?
X IMJ-I‘ﬁ(E.-' -E - X &) 5(Pf - X pa) (22-56)

which could also be abbreviated by

R =i; | Myl o(E) (22-57)

with p(E} called the density of states, is a fundamental result, and has hc:n
named the Golden Rule by Fermi.

Note that the volume of the box always drops out. For n ftee particles in
the final state, thete is a J from the density of states (phase space) and a 1/ VvV
for each free particle in the mattix element, coming from their wave function

ea'm L

vV

(22-58)
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There ace n of these factors, and thus the ¥ dependence of the square of the
matrix element just cancels the ¥ from the phase space. We will bave further
ocaasion to use the Golden Rule, but ar this point we turn to the evaluztion of
 the matrix element for the radiative transition,

C. The Matrix Element and Selection Rules

QOur next eask is to calculate

{bnle ™ " epldn) (22-39)
- We begin by estimsting its magritude. For a typical atomic transition
ep~|pl ~ Zmex (22-60)

We also need to estimate the exponent, since it is an oscillating faccor and could
~ change the result significantly. With

k

r~— (22-61)
;.nd
B i me
& ~ e prll ) (22-62)
we have
Br~31Zx (22-63)

Hence, for Zw <€ 1, the order of magnitde of the marttix element is indeed
Zmeee, thus

Ricn ~ 200(Za)" ~ odZa 2o
~ ofZa) 7 2 X 109 28 sect (2264)
It simplifies mauers that in the expansion
g = f; % (ker) ' {22-65)

il
the successive terms are estimated 1o decraase as Za. Thus, to order Ze,

{bmle ™ T £ Ple) = {gim

eoplen) {22-66)
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We may write this as

o Pulplgs) = me- bl /| 1)
= 2 e alltial l40)

=i &Y g een

= ima e {bn|r|ds) (22-67)

Thus we ate interested in calculating the matrix elemeat of the operator r, and
that is one reason for calling the approximation (22-66) the electric dipole

approximation.

If the inirial state ¢y is a hydrogenlike state characterized by the “inivial”
quantum numbess #;, /;,and m;, and the state d, the finel state, by the quanturmn
nunbers #y, &, and #y, then what needs to be evaluated is

{hal 2x] ) J e f AR [5) Vi 08) & TR (r) Yia0:8)
- [ R () Rl

x f B, B - $¥1mlB8) (22-68)

The radial integral will be discussed for a special case in the next section. Here
we concenttate on the angolar integral. We have

gr = € 5in f cos o + ¢, 5in 0 5in ¢ + g cosd

and making use of

\fia;_r Y106, @)= cos . f% Yialfd) = F sin 8 &% {22-69)

4 little algebra yields

e — ﬂ“; (q.Yer V‘%”’ Yiu + "'j;-"' Y, _1) (22-70)

Thus the angular integral in (22-68) involves

f QY ey (0,8) Y1.ml08) Vi (0,8) {22-71)
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Let us firse considet the azimutha! integration. Ft yields
2 : ; .
[ dd”—m.w sm# eﬂﬂﬂ = 2r 6W=ﬂr—m (22'?2>
b

We thus get the firse selection rale
my— me=m=10, -1 {22-73)

This was the selection rule that was mentioned in our discussion of the Zeeman
Effect. Specifically, if we define the z-axis to lie along the photon momentum
ditection k, then the condition {22-26) implies that &, = 0and hence » = =1
only appears, so that

my— e = 41 (2279

As a special case, we note thac if che final state is the ground staw, with k=
my = 0, chep m = —my. For example, if m, = 1, then m = —1 and hence the
polerization vector for the radiation is {e + i)}/ /2. The implication is
thac if the atom in che initial state is polarized along the z-axis with m; = 1,
then in a decay to a state with zeto angular momencum, the conservacion of the
z-component of angular momentum demands chat the photon carry this off.
The photon must therefore have its spin aligned along the positive z-axis, that is,
ir must have positive helicity (helicicy = +1), ot, equivaleatly, it must be left-
circulatly polarized. This is just what the term (& + fe;)/+/2 indicates.

The § integration gives fise to another selection rule. Consider frst the
special case that §; = 0. Since ¥o,0 = t/4/4r, the engular integration (22-71)
involves

! f ANV, w4} Yl .
\/'4; I.M( :¢} liﬁli( :6} = \/4—7r dia 6mi.—a (22'?5)

which implies thac the initial itate must have ; = 1. In hydrogen. the dominant
transitions to the ground state will be up — 1.

More generally, when J; and / do not vanish, we still get a selection tule.
The detivation, beyond the scope of the mathematical knowledge abouc special
functions assumed in this book, makes use of the zddition theorem for spherical
harmonics, which reads

: htix
Y}W:{a’d’; Ykﬂs(e’¢) = L Zl IC(Lr wn -+ e ,lv 1!. ity mi) YL.W1+M!(0F¢}

=lh=h
(22-76)

The coefficients C(L, my + me; by Jo, #, ms) ate the same Wigner coefficiencs
that appear in (15-44). The possible angular momenta on che right side are just
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those that could be obtained from the eddition of the angular momenta I and L.
Substitution into (22-71) yields

f )

unless

ftl . .
‘ﬁ: lcc::, mt me Lbi, o, ) Y Lgims 08) = 0

h=h+ 14,15 -1] (22-1m)
This is the general form of che eleciric dipole radiation selection rule
Al=1,0,—1 _ (22-78)

with the ohservation, obvious from (22-75) thac there are 5o zero-zerp iransitions.
There i5 4 further constraint that comes fram parity conservation. Since ¥ is odd
under reflecrions, there is an additional selection rule for the electric dipole
uaasitions:

The atomic state must change (22-79)

parity
Since parity is given by {—1)*, this implies that che Zvalue must actually change.
Thus, for example, 3p — 2p mansitions ace nac allowed to order Zev.
"Ta the extent thac the only pertutbation is the coupling

;f} p-AlLD) (22-80)

there is no spin dependence in it, and hence the spins cannot flip in the transition.
This Jeads to the additional selection tule

AS =0 {22-81}

mentioned earlier in connection with the specrrum of helium,

‘The selection rules stated above ate not absolute. The conservation laws of
angular momentumn and paricy (for elecromagnetic processes) are absolure,
but (22-78) is only approximately trae. Transitions berwsen states that involve
change of / larger than 1 cannot take place cthrough the electtic dipole mechanism.
‘They can still take place, provided there is a nonvanishing mattix element

le™ " eples) {22-82)
For Al = 2, the first power of k-r will give a nonvanishing conuibution. We
may write '
krep = § (epkr + erpk) + & (epk-r — £rp-k)
=3(epkr+erpk)+ 1k X -rXp (2283

The first of these terms is called an electuic quadrupole term, and the second B

* is clearly telated to an LB term, and is called & magnetic dipaele term. For these
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trensitions, whose matrix element we estimated o be Za times smaller than the
leading term, we wifl have Al = 2, and, since the operators in (22-83) are even,
there will be no parity chznge between the atomic states, Transitions becween
34 — 15, for sxample, cannot go via the electric dipole mechanism, but can go
via the electtic quadtapole mechanism. Actually, it turns out to be much mate
prabable that the 34 stare decays first into a 2p state, and the lacer then uader-
goes the favored 2p — 1s trapsidon.

The spin selection tule AY = 0 o, is not sacred. In addition to the
coupling (22-80) thete is the coupling discussed in connecrion with the anoma.-
lous Zeeman effect

AV = :’T; $-B(r,) (22-84)

The macrix element for AS # 0 tansition-inducing term can bé estimated. We
compare it with the electric dipole matrix efement

Mgw:} Bk X e mwm_ﬁw_mmﬂ{Za]gw
@efm)ipz| — |pl  fpls mZa)

and see thac ir is suppressed, just like che magoetic dipole matrix element, which
it strongly tesembles in form. As an example of a situation whete the coupling
{22-84) plays an important 1ole, we consider the nuclear process of photo-
disintegration of the deutcron

Zoe {22-85)

y+Ad—ontp (22-86)

‘The deuteron, to a very good approximation is a %5, stace. An elecuric dipole
wansition must involve the final (z — p) system in a *P state since A7 = 1 and
AS = 0. It rurns our, however, thac just above threshold for the reacidon, the
two pucleons are unlikely to be in a eelative P-stave. ln penerzl, particles will
be in = relacive anguler momenum L state with any appreciable probability
only if .
|paz iL (22-87)

where p is che elative momentuen and « ate the dimensions of the system. For
the deuteron it turns out that for 7's below 10 McV in encrgy, the {r — p)
system is unlikely to be in a P-state. The additional ceupling

4
= ot Esse + £8.) B (22-88)

can, however, lead to a transition berween the 25 state, 2nd the unbound '$
state. The inreraction may be rewritten in the form

— Bt 2t (e — g)e - 8B (2289)
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The first term is symmetric under the # < p exchange, and hence cannot con-
tribute to'a transition becween a symmettic and anantisymmerric spin state,
The second tenm does, howevet, contribute. ‘The coefficients are actually quite
lagge, since gp = 5.56 and go = —3.81L.

Thete is one selection tule chat is sacred, and that is the one forbidding
seto-ze10 transitions (referring to Jotad angular momentum § = 0} in ane-photon
processes. A general way of arguing che abseluteness of thig selection rule is the
following: The matrix clement, a scalar quanticy, must involve the phoron
polagization lineatly, and must cherefore be of the form £-V, where ¥ is some
vector tha enters into the problem. If the initial and final states are j = 0 seaces,
that is, have no directionality associated with them, then the caly vector is k,
the photon momentum. However g-k = 0, so that there is no way of con-
sttucting a marrix element. It must therefore not exist.?

D. The 2p — 1s Transition

Let us now specialize to the tansition 2p — Ls in (22-68). We need 10
evaluace the radial integral

f ) dr r’R:n(r) Ru(¥)
o 2N g —1-'15;1 .
[T (E) e Y[ (E) e
B EAY —3ZrfZae
‘\/g(&u) fn drote” '
B O IR TG

1

The anguler integral is

- ! 1 %z + Z
fdﬂYn.;t‘r Yim = _\/—4—1‘_'[ EaR J%ﬂ (E-Yl.o + CTM Yia

:i' i’_“jliif! Y]..—l) Yl.'m
1 —& + iy € + i€,
= \/5 (éx Iy + ‘\/5 Gm,1 + ‘\/E ﬁn,l)

{22-91)

*The relation -k = © is independent of the choice of gauge, and i a stacemenc e

~ about the transversality of the elecrromagnetic field, Such arguments “'by ennmerarion” are
Frequenty used in elemenmry particle physics, where the Interaction is aor realty known.
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Now the absolute square of the pmcluct of {22-90) and (22-91) is

96 (g.) (?) z [5noE. + 1 (53‘1 + aﬂ.—l)(eﬂg =+ € }] (22'92)

50 that the winsition rate is for a given m-value of che excited atom,

o= [ () 5

X [8nee® T 3 Bma ¥ B! + 3] (22-93)
where
1 1
w= ﬁ.[ mic2{(Za)? (1 - i)jl
_3md (20 (2299
== .

is the frequency of the radiation emitted in the transivion.

‘The angular integration in (22-93) is over the photon directions, and this is not
trivial, since e is constrained to be perpendicular to the photon momentum
direction, The integration is very simple if the initial p-state is unaligned, that is,
it occuts in the three possible m-states (m = I, 0, —1) with equal probability.
The mate is then

Ripoats = E Riparalm) (22-95}

m=-1

Since

E [iass + 3 (ot + b6+ 0] = el + 42k = 1 (2296)
the integrand becomes independent of the photan direction. This result should
also be multiplied by a factor of 2. The reason is that chere are two possible
polarizacion states for the photon, and we are derecting both of them. A more
careful way of writing (22-51) would have been

2
fdﬂ Pl ;.1 | {7 ™ op )| 2 {22-97)

2r mit

with & denoting the polarizations. The two polatization states are orthoganal,
50 that we have

MO = 5, {22-98)
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When all of chis is put together, we get

o 1 f3me il )z 1

=2 tr 2 =2 pe) ) -

Rop-te w & (s i e ) 310 (mZa 3

25 me® 1
= ;‘ ry eZe) 22 0.6 X 10° Z! sec (22-99)
This differs by a factor of about 25 from the estimate mede in (22-64). Thus
detailed factors in the matrix elements are important and guesses canaot replace
2 calculstion. Nevertheless, dimensionzl considetations and a proper counting
of powers of & do give us an order of magnitude guidance to how Jarge physical
yuantities in acomic physics are.

The expression for the rate

Ro= 5% £ 5 2 el (22100)

may be tanslared inte a formula for the intensiry of radiadon by mulriplying, it
by the energy of the Jight quantum %w. Thus

e 2 .
Ii = 42, 5;4,‘,4;1 [{fAx|iy-e™|* {z2-101)

"This, however, is just the chasical formula for the intensity of light emitted by
an oscillating dipole, of dipole moment

d = e{fleliye™ (22-102)

providing another Qlustration of the corespondence principle.

F. Spin and lntensity Rules

The inclusion of spin does noc change things very much. Itis true that the
initial states and the final states can each be in an “up™ ora "down'” spin state,
but since the interaction in atomic tapsitions is spin independent, oaly “up” —

*"up” and “down” — “down" transitions are allowed, Hence che mansition rates
will not only be independent of m; (as we saw in the last section) but also of am,
and hence, m; With the inclusion of spin-orbit- coupling, there will be small

. (on the scale of the 2p — 1s energy differeace) level splittings. For examnple, the
= land # = 2 level stcucture is changed, as shown in Fig. 22-2, The spectral
line corresponding to the mansition 2p — 15 1s split into two lines, 22Pyy —
12532 and 22Pys — 1785, For the split staces, the radial integral and the phase
space afe almost unchanged, and hence she ratio of the injensity of the swo fines can
be determined framt the angular pavis of the integral alone, that is, purely frovr angular

" memeninm considerations.
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27y,

25

! zSh?'.?

Fig. 22.2. The splitting of the 2p — 15 speciral line by spin-orbic coupling.

‘The wable below lists the wave functions for the states in question,

add parity even parity
7 ™ =1 : =0
3/2 3/2  Yuxs -
3/2 1/2 V273 Yoxe + '\/1?3_7’11)(— -
3f2 —1/2 V' 1/3 Yixe + V' 2/3 Tix- -
3/ 2 - 3){2 Y:I.,—-lx— -
1/2 172 V73 Yexe — V273 Yux- Yooxs
1/2 -1/2 V2/3 Yiaxe — V173 YViox- ¥Yoox-

In the squares of the martrix elemears, che radial parcs are common to all of
them. Thus, in considering the rates for Py,; — %12 we must add the squares of
the tansiticn metrix elements for m; = 3/2 = w; = 1/2, m; = 3/2 > m; =

—1/2,...m3= —3/2— m; = —1/2, while the rate for Pyz— 51,2 involves the
sum af the squares of the matrix elements far m; = 1/2 - m; = 1/2, . ..
m; = —1/2 — m; = —1/2. This can be done ditectly by rechniques that are

quite sophisticated and beyond the scope of this book. One can, however, work
out these quantities in detail, nsing the fact that the spin wave funccons are
oithonormal. :

Pyr— S
;= 3{2—=m=1/2 AYnjre|Yw)2=C
3/2— —1/2 0 since xjx- =0
12— 172 | ¢0/2/3 Yiolr-e|Yu)|2 =0 (am = 0)
/2 — —1/2 {173 Yia|r e Yoo)|* = C/3
—12— /2 [{V13 Yia|re|Ye)|t = ¢/3
C—1f2——1y2 | {0273 Yuo|r-e| Yu )|t = 0 (hm = 0)
—3/2— 172 Q
[ €Y a|e-¢| Yeod|2 = €

) —3/2—+—1/2
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If we sum the tenmns we get

Y r= B (22-103)
Similarly
Pl,rz—"sl.fz
mp=1/2—am; = 1/2  |{3/1/3 Y e¥| Ym}|2 =0
1/2— —1/2 1{—+/2/3 Yu e x| Yooll? = 2G/5
—1/2— 1/2 14/273 Ya ol er| Yoo |t = 26/3
—-1/2— —1/2 [ {—4/173 YVilerl You)|2 =0
Again '
> R= ‘—if (22-104)

Thus the ratio of the intensities is

R(Puys— Sup) _ 8G/3 _

I R(Pys— Sn)  4C/3

“The reasca Tor summing over all the initial states is that when the atom is excited,
all the p-levels are equally occupied, since their energy difference is so tiny
compered to the 2p — s energy differeace. We also sum ovet all the final states
if we pecform an expetiment that does not discriminate betwesn them, as is the
case for & spectrascopic measurement. In our calculation of the 2 — 15 taansi-
tion rate, we averaged over the initial m-states. There we were concerned with the
problem of asking: “If we have N acoms in the 2p states, bow many will decay
pet second?” The averaging came about because of the fact that under most
circumstances, when N atoms ate excited, about N/3 go into each onc of the
m = 1, 0, —1 seates. Here, the fact that there are mote levels in the Pyyq state
than there are in the Py state is refevant. There will be altogether six levels,
(four with 7 = 3/2 and two with 7 = 1/2) and there will be on the average N/6
gtoms in each of the srates. The fact that thete are more atoms incthej = 3/2
subsct of levels just means that more decay, and that therefore the intensity will
be Jarger.

{22-103)

Problems

1. A hydtogen atom is placed in an electric field E(#) rhat is uniform and
has the time dependence
Ep= o <0
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What is the probabilicy that as # — o, the hydrogen artom, if initially in the
ground state, makes a transition ta the 2p state?

2. Repeat the above calculation with the time dependence of the electric
ficld given by

E(f) = By ™"
and with the condition that the hydrogen atom be in its ground sateat2 = — o,
[Hins. As a fitst step, modify Eq. 22-9 appropriately] Discuss your result when

the time-variadon of the electric field is excremely slow.
3. Coasider a harmonic oscillator described by

= i P+ dmat(s) x2
where

() = wo + B cos f2

and 3w € wy. -
Calculate the probabilicy that a transition occurs from the ground state, as a
funcrion of time, given that the system is in the ground scate at 7 = 0, Use

- perturbation theory, Use the Fict that for 7 = 0,

(six’lﬂ} = 52/ Tme for n=2
=0 otherwise.

Can you derive chis formuta using the material from Chapter 77

4. Suppose s particle of rest mass M decays into two patticles of rest mass
rt; and #re, respectively. Use the relativistic relauon berween enesgy 2nd mo-
mentum to compute the density of sttes p that appears in {22-57).
[Hint. There is only one independent momentum, say p, and whart is needed is

o (- & 2

" 3. Consider the above calculation when the decay is of the form

A—=B+C+ D

with particles C and D massless.
{Hns. Thete ate now two independent momenta.)

6. In this problem the adigbatic theorem i3 to be illustrated. The theocerm
states chat if the Hamiltonian is changed very slowly from Hy to H, then a system
in a given cigenstate of Hy goes over into the corresponding eigensate of H,
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but does not make any transitions. To be specific, consider the ground state,
5o that

Hopo = Evpo
Let V(1) = flAV where f{8) is 2 slowly varying function, as shown in the graph,
If the ground state of H = Hy + ¥ is w, the theorem states chat

| {teal )} — 1

Jix)

The steps to be camied out are the following:
{a) Show that

LI R T T
T f . & e i —
for times # such that f{#) = 1. Use the fact that
2R’ E.* — Ef
w <R
Either construct an example of a function fi#) or nse integration by pars,
that 18, wnte

‘I(E.' —Be)/A
B0 — B

1)

fw=

14
i & -~
in the abave.
(b} Calculate y{#) using (22-3) and (22.9). Compare this with the formula
{16-19) which here reads
_ E {@a|Vdo} V|¢u)
w = gt me B0 — F__O

and thus show that
| (a9 3] — 1

7. Work our the 2p — 1y trapsition rave for the three-dimensional oscil-
lacor, following the steps cartied out in this chapeer,
8. Nuclei sometimes decay from excited states to the ground state by
internal conversion, a process in which one of the 1r.eleccrons is emitted instead of
. a photon. Let the initial and final nudear wave functions be



The Radiation of Atoms 363

dr(ry, s, ..., ra)  and (R Ry, ..., T4)

where r; (f = 1, 2, . . . Z) describe the protons. The perturbation giving tise o
the transition is just the nucleus-electron intersction
=
- e
V= - [
=1 ll' — 1yl
where r is the electron coordinaee. Thus the matrix element is given by
—.rp +r Z ,
dr | dey .. d%
f f 1- A'hr v :):1 Ir = v $rvnlT)
{2} What is the magnirade of p, the free eleccron momentum?
(b) Calculate the tate for the process for a dipole transition in terms of

d= E f@l’l P d‘l“¢;r,‘¢;

by making use of the expansion
1

Hins. The integral can be evaluated using

f A ¢ PR 1 v anelr) = HreV, f 2o P golx)

See the discussion of the photoelectric effect in Chapter 25,
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chapter 23

S eIected Topics in

Radiative Transitions

" A. Lifetime and Line Width

The number R{f —> §} that we learned to caloulate’in Chapter 22 represents
the probability for the traasition ¢ — £, divided by the time during which the
perturbation has acted. This time must be long compared to f/(Ea" — E* + 7))
in otder that the transicion probability be proportional to #, but it clearly cannot

“be w00 loag. If we ask for the probability that the initial state ferain insacr,

we get

Py =1— [Z R(r'—bf)] 4 | {23-1}
=i

where the sum is over all final states that are accessible, This-dleatly has no
meaning for long enough times, since probabilities are posicive. It tuins out
thac if the calculation of the time development of the system is done more
catefully,! then it can be shown thac the right side of {23-1) just repesents an
approximacion (to lowest order in the percurbation) to the correct exptession—
agzin only true for long times—that ' :

Pdp) = exp [— ;fY_‘, R(i — f)] (232}
L2
One may thus speak of a Jifeiime of the initial state

{23-3)

T =

i. 1.
R~ X Ri—f)
Foii

* 1 This is done in the $peciat Topics section, "Lifetimes, Line Widths, and Resonances.””
. ' 365
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The towl transition fate R is the sum of partial transition cates into the possible
channels £, In the example that was discussed in detail, the 24 — 1 tmansition in
hydrogenlike atoms, no other channels are available, so thac the lifetime of the
2p state is

r= 1.6 % 107" Z~* sec (23-4)

This is in excellent agteement with experiment. Let us compare this (we take
Z = 1) with the time it takes the electron to "go once atound the nucleus.”” The
velocity is ac, and the distance is of the ordet of 3 X 10~ cm, 5o that the char-
actetistic time is of the order of 1.4 X 107 sec. In terms of this time, the 2p
stace is very long lived,

Since the 2p state has a finire lifetime, it should, by the uncertainty prif-
ciple, have an uncermainty in the energy, of magnitude

ar~ (25-3)
T
"The way in which this manifests itself is that the incensity of the line, as a fuac-
tion of frequency, is not completely sharp at che value wp = {Esp — Ens)/h but
it has a disuibution of the form
R/2

{w — wo)® + B/4
Note that in the limit that R— 0, that is, in the limit that perturbation theory is
strictly applicable, we get, as a consequence of the formula

Iiw) (23-6)

€
Lim ————, = vi{w— 237
«—0 (w - t.nlu‘]2 + et ' (‘d ﬂ‘l}) ( )
the line shape represented by the energy-conservation delta function. The width
of the line (23-6) is R, and this is 2 measure of the uncettainey in the enetgy.
This line shape, sometimes alled the Lorentzian line shape, is not whar is
genenally observed, singe there are other effects that broeden it. ‘There is:

(a) Collision Broademing. One does not observe 2 single atom in isolation,
but a gas of hot atoms. In the gas there will occur collisions berween the atoms.
If we definc 4 collision time 7, as some mean time between collisions, and if
r. < =, then, in effect, the lifetime of the stare will be 7., and the enetgy un-
cercainty Bf7".

To get a tough estimare of the collision rate Re {= 1/r.), tonsider one
atom at rest. If its effective area is o (the collision cross section that will be
discussed in Chapter 24), then it will be hit by another atom within 1 se¢, if the
acom finds itself inside a cylinder of volume vor (Fig. 23-1), If there are n atoms/
cm?, the number of collisions will be

R, = nmvo sec! . (23-8)
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Target

<
Y e - -t
I i U} -—3r -t &
; [ —r -
£

-« o =

Fig. 23-1. The number of collisions pet second for pardcles moving wich 2
velocity 7 normal relative o the rarget,

To see the dependence of this on the pressure and remperature of the gas, we
use the kinetic theory relation

met = 35T (23:9)
and the ideal gas law

= —% {23-10)

where & = 1.381 X 1071 erg/deg is Boltzmana’s constant. Thus, if for # in
(23-8) we take {#7}V7, we pet

R.= ‘% (é%l_‘)m {23-11}

If we now write
m=16X10"Mgm sothat Mis the molecular weight
p=10°p,  where 5. is the pressure in atmospheres

¢=nX 107D whete D is the atomic or molecular diameter in
Angstroms

then

L = 3.4 e 23-12
R, =34 % 100 L (23-12)
B The collision rate can be decreased by decreasing the pressure, so that in the
{aborarory (in contrast to stellar surfaces) collision broadening can be controlled,

(b) Doppler Broadesing. Even at low pressures, the radiating atom is
moving quite apidly (the gas is hot) and its frequency is shifted. If », is the
velocity of the avom in the direction of the line of sight, then the shift is

. "

A= — (23-13)
4
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In terms of che temperature, given by

— T
v d = -f— (23-14)
m
we have
T \2 )
2 o 03 X 107 (——) (23-15)
© M

where M is again the atomic or molecular weighe (M = 1 foz hydrogen, M = 4
for helium, etc.). Thus, the best that we can do is obain

— ~107¢ (23-16)
[}

wheteas for the paturs] line width, this is ~ 3 X 10-%,

B. The Maossbauer Effect

An atom (of any other quaptum system) can act as a very accurate clock,
since its transitions are signaled by radiation of a very well-defined frequency.
If the only limisation were the natural line width, an accuracy of 1:10° could be
achieved in atomic transitions. As noted above, the Doppler broadening reduces
this to 1:10°. One might think that use of a liquid or solid sowrce would elimi-
pate this, but then broadening caused by the effect of neighboring atoms is
jusc as harmful. One might examine nuclear cransitions. A nocleus such as
% emits a y-tay of energy ~100 keV, with a lifetime of 10~ sec. This
_cotresponds Lo '

Aw  OE  Rfr 10-¥/101*

? = m o~ DG ¥ 1070 {23.17)

There will, unfortunately, be a tecoil shife of the line. The y-ray caties off
momentum /¢, and the nudeus, to conserve momentum, must recoil with the
same momentum. This gives tise 1o 4 recoil energy

2 i fuo\t :
2M M\

end thus a decrease in the energy radiated. The fractional change in frequency is

AE e 10 (MeV) ~3 % 10T (25-19)
Fw | 2Me® 2 X 940 X 191(MeV) )

The observation of radiation of this energy cannor be carried out with the
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conventional, extremely accurate speatoscopic methods, but mwust utilize a
detecror thar is extremely ““well tuned” to the radiation. ‘This is best done by
using the same material {e.g., r7Ae?%1) as an absorber. The absosption will be very
much enhanced ac the “resopant”™ frequeacy at which the radiation is emitted,
but here, too, thete will be a 1ecoil shift. The overall shift is thus Aw/w =~ 6 X
1077, Thus, the “fine tuning” does not work, since the line is shifred by far
more than the width, which is of the otder of 10~1% . One could uy o com-
pensate for the recoil by maving the emitrer with the recoil velocity. This is
given by

¥ Pooit Pufc i ~

¢ Mc_im_zzn{cz_sxw_’ (23-20)
. that is, » = 1.7 X 10* cn/sec. This presents technical difficnlties, but it has been
achieved with an ulmacencrifuge.

A major breakrhrough came with the discovery by Massbauer in 1958 that
under cerrain conditions chere is 2 high probability of receffers emision. The
emission is not recoilless, of conrse, but the recoil is not taken up by the nucleus,
but instead by a large part of the crystal that the nudeus is imbedded in. Since
the mass of the nucleus is 107 times smaller than chat of the crystal, the recoil
energy is completely neg]igible. To get some intuition about what is happening,
Jet us consider the nudeus as moving in a harmonic oscillztor well, with char-
actetistic fiequency we. The energy levels of the oscillator are

Ey = fun (», F oot et 3) (23-21)

The harmonic well is just an approximate description of the crysmlline forces
‘that are responsible for the properties of the lattice. If the farces that tie the
aucleus o irs neighbors are strong—if the “springs™ are stiff —chen « is large;
if the “sptings™ are soft, then wq is small. In terms of level spacing, a “'stiff spting™
has widely separated levels, thar is, a low density of states, wheress a “soft
spring’™ has a high density of stares. Let us now consider the matrix element for
2 transition from a nuclear swte described by ¥, (ry, I3, . . . ¥a) 10 2 nucles  stare
described by ¥,(x;, 15, . . . ¥¥), 2nd we take the interaction to be

¥
- — - Aelre.? 23-22
e p(z P - Ae(re.?) (23-22)
The matrix element then is propostional to

r

- Ef [darl - dsr‘v‘};(rl . .'I'N) Zk ' pté_;k'“ ‘I’{(l‘l, L l'_N}
(23-23)
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I we introduce the center of mass cootdinate B = (1/N) X7 ¢ x; then (a) the
intetaction term takes the form

- = P E £ Pr p K (23-24)
Me PICTOOS

where g; = 1, — R, and (b) the nuclear wuve function decomposes intc 2 prod-
uct describing the internal motion and the motion of the auclear center of mass
in the barmonic potential

Ty ... tx) = YR 0, - - - o) (23-25)

Thus the matrix element {23.23) becomes

__‘_ * —ikE "
~ M f BIRY, R) e e (R)

X f digy . .. d'ﬂw—uﬂ‘;(!l Y 1 Z LA LY ‘-—ﬂ"a¢i(ﬂl; P TR
protans
" ' (23-26)
We may write this in the form

_M = Mipemal f d‘n"':_r(ﬂ) £ _‘.n!%(a) (23-27)

where we have set #; = 0, since the initial state is in the ground stace of the
lattice. The probability thar the radiative transition leaves the nucleus in the
lastice ground state is

[Miac|? f FRYR) ¢ Y(R) i
Pk) = - s
| Mine* 2 | fdw:,(n) r‘”w-m)‘
Ny

= I fd’ll%(ll) e-*-wm" ' (23-28)

In the last step we 1eplaced the sum in the denominator by unity, using com-
pleceness.? To calculate this, we vse the notmalized ground state wave function

* The focmal proof is quickest. We bave
3 mple® B0} (s = T (1R np) derje™ o)
nr nr
Using
1= 2 lne)el

one gets
(ol‘—ibngk-nlo) =1
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of the oscillaror, We found in Chaprer 7 thar che ope-dimensional grouod state
wave function is

Volx) = (%)m oo/ 2h

Hence, for thiee dimensions we have

ValR) = () duly) %(z) _ (::%u)au R/ 2 {23-29)

‘(M_ﬂ)a&[dane—ﬂsmn’ﬂ e—ik-R
1

where My is the muass of the nucleus, We get

x
Py= (M%’ﬂ)a( f DR o~ Mrr/ MR A2 My e—&'n}e&Mmm‘

We thus calculate

H

= o AN 1M ubon
_ (_ recoil :nergy) ' 2330)
level spacing

SInCE Precoy = € and % is the level spacing in the lattice. Thus, if the Jevel
spacing is large, that is, we have a stiff spring, tecotlless emission becomes more
. ptobable. The model of the lattice that was used here, that of cach nucleas

moving in its own harmonic potential, is the Einstein model of a lattice, and the
frequency ey is the so-called Debye frequency, so that we should really replace ws
by wp, which is related to the Debye temperatuce T by

fwp = £Tn (23-31)

A tnore accorate teatment of the lattice using che Debye model for its desctip-
tion merely changes the exponent by a factor of 3,/2. ]

It is not quite correct to say thac the whole crystal recoils; instead, in 2
time r equal to the lifetime of the transition (1.4 X 107 sec for Fet?), only a
tegion of the crystal of magnitude

L=yr

where #, is the velocity of propagation of a lattice disturbance, {i.e., the velocity
of sound} absocbs the recoil. Now a reasonable estimate of v is given by
. 20n

By o ——
i
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whete 4 is the larrice spacing. Thus

L oot
4  2Im
and with wp = 10" sec-!, the number of nudei absorbing the recoil, ~(L/a)®
is stll encrmous.

The above estimates, combined with the uncertaincy relation, may be used
to show that it is not possible to determine whethet it is 2 single nucleus thac
“really” recoils. To measure the recoil energy k2 2 My takes a time of the
arder of

A —
> T 2My)

The condition For the M&ssbauer effect to occus is that
hitE?

<
2My

D

Hence

1
Ar T —-
wp

During that time the disturbance will have eravelled a distance
o &
Ao A~ O M —
2% i

thac is, ovet a dismnce coveting many nuclei.

The question arises of how did we manage to get away from the problem
of recoil and momentum conservation by talking about the energy states of the
nucleus in the crystal luttice? Where does it say- that the crystal absorbed the
momentum? The quantum mechanical answer is that, if we want to talk about
rpomentutn, we should work in & momentum representmcion. This, however, is
complicated, since it is difficult to describe the crystal forces in that representa-
dion. What one must do is to decompose the crystal motion {the crystal is justa
lot of osciflators with nearest neighbor “sptings'’) into mormal modes and
quantize these. The quanta of the lattice motion, analogs of photons, are the
phonons. Recoilless emission then means 2 transition in which phonons are not
emitted. The resulting formula is very similar to (23-30). Under these circum-
stances, the recoil broadening is infinitesimal compared to the natual line widch.
There is still Doppler broadening because of the thermal motion but thiscan
be handled by ceoling the emitter and absorbef.

Recoilless emitters ptovide us with a superb clock, and reseagch urilizing
the Musshanet effect has been done in many fields, such as solid-state physics
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and chemistry, We will mention just one application, the terrestrial measurement
of the gravitational red shift. We noted® that a photon will have its frequency
shifted by

— == (23-32)

if it falls throngh a height x. This can be compensared by a recail of velocity ¢,
where!
o® = 2px (23-33)

(If the photon and the absotber were to fall freely together, there would be
resonane sbsorprion.) If the absorber or the source are allowed to oscillate
rapidly—one uses a transduces—and the absorption curve is correlated with the
oscillations, it is possible to check the gravitational shift. Since the velodity, fora
sepatation x = 20 m, is of the order of ~20 m/sec, the expetiment is feasible,
and was carried out by several groups. Within the eitors, the effect is confirmed,
For example, for Fe the predicred shift is Aw/w = 4.92 X 10715, and the
expenimentu| shift found by Poucd and Reblka is (5.13 £ 0.51) X 1071 A
* similar experiment in which the energy shift of the y-ray emired by Feb? accel
etated on a mapidly rotating tumtable was measuned again yielded results jn
sgreement with che Equivalence Principle. '

C. Induced Absorption and Emission

. In our discussion of the normalization of the vector potencial appropriate
to the radiation of an atom in Eqs. 22-28 and 22-29, we saw that the matnx
- element for emission was proportional to {N + 1)U2, where N was the number
of quanta in the initial state and the mawix element for absorption was propot-
tional to N¥2 Since this refers to quanta of a particular rype, the quactity N
should really be labeled by the momentum %k and the polarization scate h of the
photon, that is, N should be replaced by Ni(k). We may use the N-dependence
to detive the Plamck Radiation Law, thus providing a quantum mechanical
justification of Planck’s approach.
Let us consider a cavity containing radiation. The walls contain atoms that
ahsorb and emit radiation. Since there is a variety of aroms, with a variery of
_energy levels, there will be a continuous spectrum of frequencies. We will
coacentrate on a patticulat frequency, cotresponding to transitions between a

* 8er the Special Topics section 2 “'The Bquivalence Principle,”
11t is one of the spbrledies of radiation in a gravitational field that the Doppler shift
i8 the tramreerse shift ¥’ = ¥(1 — #2/)VE Only ia this way will the shift in an accelerated
frame ba the same, whether the absorber is falling or sitting on the edge of 2 rotating disk,
+  with the emirrer in the center.
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patticular paiz of levels i a particular species of atoms, that is, we will describe
the atom a3 having cwo states of enetgy, E; and Es, respectively, with £ < E».
When equilibrium is established, there ate as many photens absorbed as there
are photons radiated.5 The number of photons radiated by the walls is equal to
{numbet of atoms in the upper state “2") % (transition rate for ¥2" — “17);
the number absorbed is equal to (number of atoms in state “1”*) X (transition
rate for 17 = “2"), dhat is,

NaRersissicn = NiRebsorption (23-34)

We also have

Remission = [Ma(k) + 1} Bn (23-35)

where Re; is the emission rate into a state with one photon. We use (22-57) to
wtite this in the fom

' 1 2r

Ru=—F—"—

H 2]3 +1 4

Here p stands for the density of photon stares; we have the square of the mattix
element, and it is summed ovet the final states of the atom, char is, the 2J1 +1
angular momenrum stetes, and averaged ovet the initial staves. This is exhibited
explicitly—the sum is over initial and fipal states, and is divided by 2f; + 1, the
number of angular momentum states for state “2.” The reason for averaging
over the initial state is thac when the state 2" gets excited, then all the states
that only differ by the m-value will get excited with equal probability. Only oae
of the states.is excited at a time, and thus the proper counting is done when
we sum over all of the 2J; + 1 staces and then divide by their number. Note also
that we denoted the perturhation by ¥+ as the term associated with the time
dependence ¢t Fot absorption, we have

2 122 {23-36)

Rnbsmpﬁun = NX(k) Ry . (25'37)
where i
R = —— 25 [ @lvin))®e (25-38)
2h+1 A .

The density of states here is the same as in {23-36), since we are dealing with
only one frequency. Furthermore, '

T levinlr= 2 X @lviue|rir
> X ameraivia)

2 lajp+|z)e {23-39)

' One must convinoe oneself that it is permissible ro consider equilibrium for one
frequency at a time, as we do here. This becomes plansible when we realize that the proba-
bility of emission of two photons at a time is smail, so that the mdiaton field in the cavity
still abeys lincar equations. ’

i
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This assettion is sometimes called the Priuciple of Detailed Balance. On the face of
it, #t is an identity, but one could imagine chat the perturbation leading to the
ttansition "1 — 2" is not the hermitian conjugate of the perurbation that
leads to the wansition "2"' —+ "'1." in which case the above dedvation would
break down. It rumns ouc that the principle holds, provided that the total Hamil-
tonian is invatiant under time reversal® The interaction of charges with the
electromagoetic field has this property,
As 2 consequence of (23-39) we have

Remiion _ M) 41 2/ 41
Rybsorptioa Ny 2h+1

Nkt g
Ni(k) £

(23-40)

where g; is the conventional notation for the degeneracy of the state 5" On the
other hand, we Jearn from statistical mechanics that at equilibrinm, the occupa-
tion numbers of che atomic states Na and N; are relared by rthe Boltzmann
factor

En/ET

Ne &2 e Bf  _pasiT
— = ==, 23-41
Nl. ae B/&T £ ( )
HCHCC
£ ‘_Wgr _ & _ Rabsomrion _ Nh(k) £t
4 N, Remission M(ll'-) +1 48
that is, )
1
M(k} = !WJQT.__ 1 {23-42}

‘The photon energy ac the given frequency is given by the product (number of
photon states in the interval dw) X {(number of photans) X (energy per photon}
X (a factor of 2 to account for the two independent polatizavion states). Thus

vV dp s
(nF)s My
¥V odxk b 2

(22) dw T _ 4

AU () =

grhf w \3 14
-2 (5 mry @)

8 Acrually, in lowsst order perterbation theory, (23-30) always does hold.
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To get the enetgy density, we divide by the volume of the cavity V. If we express
this in terms of v = w/2x, we get

8xh v
v = =5 AT (23-40)

In the presence of a large number of photons of 2 given wave length
[N\(k) large] transition rates cotresponding to that wavelength will beenarmously
enhanced. Thus if many atoms cag be raised to a given excited state, and the
proper enviropment of the “right” kind of photons is provided, then they will
decay in a vety shore time, thus giving rise to an intense, coherent, and mono-
chromatic pulse of radiation. The laser (Light Amplification by Stimulated
Emission) does just that. Under equilibrium conditions it is difficult to obtain a
large number of atoms in the excited states from which the transitions are to
take place, because the Bohzmann factor e AT g very small, even at high
temperatures, so that special techniques must be used ro achieve this,

Consider for example, the helium-neon laser, There, advantage is taken of
the fact that the 21% and 225, levels of helium almost coincide with certain sets
of levels of neon, the (2p)5(55) and (2p)°(4s) excited states, respectively (Fig.
23-2). The helium levels are easily excited; an electrical dischacge in the gas will
excite many levels, and they all ultimately decay to these states. The excited
helium atoms will collide with unexcited neon atoms in a migture of the two
gases and easily transfer their energy to them. In this way a kurge number of neon

2's, Collision

5

L
2p° (5] Visibla keer
. transition
235, Collision -

L
(2pP {45} Infrared

Taser (rOnsition  pe——

/ e

————
{285
Deexcitation by
colligions with welis

P

115,

H e m————

Fig. 23-2. Schematic sketch of relevant energy levels in He-Ne laser.
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Fig. 23-3. Schemartic sketch of laser.

aroms find themselves in states that would otherwise be sparsely -populated.
. A popalation imversion is created in the neon. These excited states decay o (25)4(4p)
and (2p)*(3p) sutes, emirting photons of a well-defined wavelength. These
. photons are trapped by mirrors, thus creating the proper eovironment for the
' _next round of whar is now strongly stumulaced emission (Fig. 23-3). In this way
¢ isieense monochromatic and cohetent beams of photons are created.

The cechnological applications of lasers are manifeld, and their develop-
nent provides just one of many examples of the usefulness of quantum theory
“got only for the understending of natural phenomenz, burt also as a source of
few, subtle technological tools.

Rcfcrcnccs

The Masshauer Effect is discussed in detil in

H. 'anuenfclder, The Ménbauer Bffics (A Review with 2 Collection of Reptints),
W. A. Benjamin, Inc, New York, 1962,

A qualitative discussion may be found in

V. F. Weisskopf, “Selecred Topics in Theoretical Physics,”” in Lecturer in Theo-
resical Physics, Vol. III, W. E, Beittin, B. W. Downs, J. Downs, Editars,
Interscience Publishers, New York, 1961






chapter 24

Collision Theory

Atomic and molecular strucrure was largely explored through SpeCros-
copy. When it comes to uwying to undersrand nuclear forces and the laws that
govetn the interactions of elementary particles, the only technique available s
that of scavtering a variety of particles by a variety of targets. In some sease,
spectroscopy is also a form of “scattering.” The atom in the ground state is
~ excited by some projectile (it may be electrons in a discharge tube or collisions
with ocher target particles, as in heating up of the gas), and then an outgoing
photon is observed, with the atom going into the ground state again, ot possibly
- another excited state. We do not usually describe these processes as "collision

processes” because the acom has very well-defined energy levels, in which it
_ stays for times thac are enotmously long compared 1o collision tmes,! so that
it ig possible to separate the “decay” from the excitation process. In parcicular,
.the charscteristics of the decay are not sensitive to the pardcular mode of
© excimton. In nuclei and also in elementary parcicles, there exist levels, but
frequently the lifetime is not sufficiently long to warrant 4 separation into
excitation and decay, especially since accompanying the “'resonant’ scatreting
there is also noncesonant “background” scattering, and the disentangling of
the two is somerimes complicated. In this chapter we will therefore discuss the
process as a whole.

A. Collision Cross Section

The ideal way to talk abour scatcering is to formulate equations that
_describe exactly what happens: an incident particle, described by a wave packet,
approaches the wmrget. The wave packet must be spatially farge, so that it does
net spread appteciably duting the experiment, and it must be large compared

* Recail that che lifetime of a 2p hydrogen state is 1.6 x 10~ sec, which is large com-
pated o the characteristic time z¢fo ¢ = 2 10777 see,

194
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with the target particle, but small compered with the dimensions of the labora-
tory, that is, it must not simultancously overlap the mrget and desector. The
latetal dimensions are, in fact, determined by the beam size in the accelerator.
There follows an interaction with the targer, and finally we sce two wave packets:
one contnues in the forward direcdon, desctibing the unscatreted parc of the
beam, and the other fies off at some angle and describes the scattered particles,
The number of particles scattered into 2 given solid angle per unit time and unit
incident fAlux is defined to be che differential scattering cvosr secsion. We will not
follow this approach directly,® but will insteed use some of the material de-
veloped in Chapter 11 to obrain the differential cross section. We will, however,
keep the wave-packet treatment in mind gs we interpret our formal results.

" In out discussion of the continmum solutions of the Schrodinger equation

in Chapter 11 we concluded that: (a) A solution of the Schrédinger equation in -

the absence of a potential is the plane wave form %%, which describes 2 flux
. fi Rk
)= Wy — eVt = — (241}
im ]
If we choose X to define the z-axis, then the large r behavior of this solution

may be written (cf. 11-31} in the form of an incoming + an outgoing spherical
wave

P il —le/d)  ithr—in/2) '
e"”ﬁﬁ Y+ [ ]P,(cos 6 (24-2)

im0 f

(b) The copservation of patticles forces us to the conclusion that the presence of
2 radial potential can only alter this to a funcdon, whose asymprotic form is

—iCkr —iwf2) ei(b’—;r.ﬂ)

$ry= Z i (2t 1) & [‘——— — S(E) ] Pilcos (24-3)
Zé =0 L r ;

subject to

1548 =1 {24-4)
The asymprotic form (24-3) may be fewritten, with the help of (24-2), as
= Sk — Thr
sy =+ | B a0 YO s 2T ey
=0 2ik r

cotresponding to a plane wave +- an outgoing spherical wave.® Note that we are
working with the effective one-particle Schrddinger equation, so that m is the
ceduced mass and 8 is the center of mass angle between the diteccion of k (the
z-axis) and the asymptotic point r, where, presumably the councer will be set up.

1This is done very nicely in R, Hobbic, American Journal of Physics, 30, 837 {1962}, at
the level of mathemarics that we use in this book. .
* See Bq. 11-36, which cxplains why this is catled an oxigeing spherical wave.
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When the targer is much more massive than the projectile, there is no dis-
tinction berween the lahoratory angle and the center-of-mass angle. The kine-
matics are easily worked out using the marerial of the Special Topics section 1.
Note also that we could, of course have set up a solution that has the asymproric
form of a plane wave + an incoming spherical wave since it is the firse term in
(24-3) that conld be modificd by a coefhcient satisfying (24-4). However the
-~ solurion that describes the scattering is the one involving dhe outgoing wave.
Let us alcukate the flux for the asymptotic solation {24-5}.

" ik
j= Y. l[g“" + fi8) ir—] v [e“‘" + A ‘T] — complex conjugate

(24-6)
where we have defined
8 = :f, @+ 1) filk) Picos B) (24-7)
with
f4B) = [S:&) — 1)/2ik (24-8)

: _Calqul:.ting the pradient gives
L | I SR, ‘_ﬁ'][- aory o 1200 &
__'j_2im [e +H/'O r U r o ¥

+ .f(@) (ié ‘; - f;_;)] — complex coniugate}

% ¢ —ihr (1 —c0s8) :&(1 —con) 1
= —| 7 ¢ - ] 2
Sm [:k + ik f* () + ikef(0) -+ ke, | fid)1 =
(1 —cost) go.ir(l ~cosf)
— Bfl) —— ,"" + s a'g(:} T~ complex conjngate]

. where we have left ouc 1/+® terms, and where we have used k-r = fr cos 6, in
the exponential factors. Thus the fux is

._ Pk Rk L
=+ o LA =
+ % % £r(6) ¢ L fg) gt oot
B o [ — (1L —cosf) ‘uru—mwj
+ v Vi (O3 + f®
- % - | f0) 770 — o) e |

LI [af@ e _ 0 oo (4

2m [ 00 o8
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This tather involved expression simplifies considerably when we consider that
§ 5 0, since ope never does a scatcering experiment direcdly in the forward
direction,* and that in a measurement one always integmtes the flux over a small
but finice solid angle. Thus in the lasc four terms of chis expression we should
replace &' "< by

f sin & d0dp g(o.9) £ : (24-10)

whete g(f.4) is some sort of smooth, localized acceptance function for che
counter. Mow, as # — @, we have an integral over 2 product of a smooth Func-
tiot and an extremely mpidly varying one, and this vaoishes faster than any
power of 1/r. This is what is known in the mathematical literature as che
Riemann-Lesbegue lemma, and the reader can convince himself that this is
indeed so by working out an example, with a gaussian acceptance function, say.
Thus, only the first two terns remain, 36 that

%
L)

i=—

- " 0 (24-11)

In the absence of & poteatial, orly the first retm is there: it represents the incident
flux, In 3 wave-packet treatment, 7k/m would be multiplicd by a fusction that
defines the lateral dimensions of the beam. Thus, if we ask fot the radial flux,
ty-}, then that term gives a contribution ik i,/# = Kk cos §/m, but only within
4 finire cegion of the z-axis (see Fig, 24-1). Since the couater is put outside of
that region, this first term does not contribute 1o the radial Aux in the asympotic
region, 50 thar
fE|f6) '
jro=—" Ol (24-12)
m re
Thus the number of particles crossing the area that subtends a solid angle dQ at
the origin (the tasget) is _
| B Ao ,
j-LdA = — o rdQ 24-1
i e (24-13)
The differential cross section is this number, divided by the incident flux,
#ik/ wm, that is,
do = |f(B)|" 4R (24-14)

H the potential has spin dependence, there may be an azimuothal dependeace, so
that more generally,

d
7;; = |fled)|? = (24-15)

+How could one rel! scatrered from unscateered particles?
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%De‘reemr
Dutgaing \
scattered wave

/

I .] IS

Fig. 24-1. Schematic layourt for scartering experiment. The scattermg angle is the
laboratory a.ngle

The totzl cross section is given by
Teor(R) = f Y % (24-16)

If we now use f{p) as expressed in terms of S{&), and express the larrer in terms of
the phase shift (cf. 11-41} 5(k) = &5 <o that

fiey == 7_: (2f 4 1) 9 sin 8,(8) P:(cos 6) (24-17)
f—o

then

ot = f 40 [iz (22 + 1) ™ sin §6) Pilcos e)]
)

E; (2 + 13 e ® sin 8.() Pr(cos s)]

and using
f d0P{cas §) Pr{cos 8) = A L] 4
K »{cos B) = Py (24-18)
we get
4’ -
o = G 2 (4 1) sin®hith) (24-19)
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It is #n interesting fact that

ImfA0) = igo (2! + 1) Im[*¥ sin 58] P1)
= i :o (2F 4+ 1) sin® 5:{k) = %Umc (24-20)

This relation is known as the optical thearem and it is wue even when inelastic
processes can occus, as they do in nuclear and particle physics scartering proc-
esses. It is a very useful relation and in wave language it follows from the face
thar che toml cross section represents the removal of fux from the incident
beam. Such & removal can only occur as a result of desaructive intetference, and
the latver can only occur between the incident wave and the elastically scatcered
wave in the forward direction. This explains why f{0) appears lincarly. A more
 deiled examination shows why the imaginaty parc is involved.*

The requitement that |S5;{#)] = 1 followed from conservation of flux.
Actually, in many scattering experiments there is absorption of the incident beam;
the target may metely get excired, or change its state, of ancther pardde may
emetge. Under these circurnstances our discussion is unchanged excepe tha

SdE) = nik) 5P (24-21)
is to be used, with
o< qf) €1 {24-22)

because we are dealing with absotption. The partial wave scattering amplicude
is now

Sig) —1 - il k) £E g _m sin 28; +i 1 — 3 €08 25,

fle) = —= Py ” ” (24-23)
and the total anic ctoss section is
Oq = h; 2+ 1){fb|*
1 4 9 — 2 cos 24 (2424)

= 4x 21

L@+ e
There is slso a cross section for the fnelastic processes. Since we da not specify
what the inelastic processes consist of, we can only talk about che sosal inelanic
cross section, which describes die loss of flux. If we fook at a particalar term in
(24-3), the inward radial flux carried by

ie
YR Pyfcos 8)

5 See L. 1, Schiff, Preg. Theo. Phgs., (Kyota), 11, 288 (1954).
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Gl
m {2E8)*
{cf. Eq. 11-36 and the fact that ¥ = Pi{cos 8)/+/ 4x). The outward radial flux

is (Fk/m)(| Su(k) | 4or/44%), so thar the ner vz lostis (fid/m)(r/ B[ — ni(E)]
for each [value. Hence, dividing by the incidenr flux, we get

P éi z‘: @+ 1)1 — n3#) (24-25)

Thus the total cross section is

Ot = 0 + Cinel

il

"E'.-_Z 2+ 10+ —2cos28;+1— 5f)
f

1—’:)_:.: (2/4+ 1} {(1 —mcos2 &) (24-26)

It also follows from (24-23) that

Imfl0) = ; (2! + 1) Im fi(k)
_ L —mqcosds &
= D@ s e (a2])

.30 that the optical theorem is indeed satisfied,

If5(£) = 1, we have no absorption, and the inelastic cross section vanishes.
When #:{#) = 0 we have total absorption. Nevertheless there is still elastic
scatteting in that partial wave. This becomes evident in rwattering by & black dix.
The hlack disc is described es follows: (a} it has 2 well-defined edge and (b} it is
totally absorbing. Since we will consider scawtering for shomr wavelengths,
chat is, large k-values, condition {a) specifies that we only consider partial
waves ! S L, whers

L=tka (24-28)

and 4 is the radius of the disc. Condition (b) specifies that 9(£) = 0 for the
relevant values of / < L. Thus

. L )
Tind = X @+= D= (2429)
end

| A
O = T:E (2! + 1) = xa® {24-30)
FET . .
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region _____,_’r"

Fig, 24-2. Black disc scantering and the shadow effect,

so that the total cross section is
Giot = Bl T Uinel = 2wd* (24-31)

The result looks peculiar; on purely classical grounds we might perhaps expece
thar the total cross section cannot exceed the area presented by the disc; we
might also expect to see no elastic scattering when there is total absorption,
This is wrong; the absorptive disc takes flux proportional to w#* out of the
incidenc beam {Fig. 24-2), and this leads to a shadow behind the disc. Far away,
however, the shadow gets filled in—far encugh away you cannot “sce” the
disc—and the only way in which this can happen is through the diffraction of
some of the incident wave at the edge of the disc. The amount of incident wave
chat must be diffraceed is the same amount as was taken out of the beam to
make the shadow, Thus the elastically scattered flux must also be proportional
to ma?. The elastic scattering that accompaaies absorption is called shadow
scattering for the above reason. It is strongly peaked forward. The angle to which
it is confined can be estimated from the uncerainty principle: an uacertinty in
the lateral direction of magnitude & wilt be accompanied by an uncontrolled
latetal momentum transfer of magnitude g1 ~ K/e. This, however, is equal to
19, so that
i 1

B — o~ — 24-32
aft ak (a4:52)

This agtees with the optical tesult 8 ~ »/a. These featutes ate ohserved both in
nuclear scattering and in particle scartering a1 high energies, since the central
region of nuclei and of protons is strongly absorptive, and the edges of these
ohjects are moderately sharp. (See Fig. 24-3.} :
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Fig. 24-3. Angular disttibudon of 1000 MeV (1 BeV) protons scattered by
U0 puclei. The angular distribution shows the dips thar characrerize difiraction
scactering. The departures from the shape of Frauenhofer scattering in optics is due
to the fact that nudei ae not sharp, nor are they tomlly sbsotbing. The curve is
the result of 2 theoretical calculation that takes these effects into account, (From H,
Palevsky et al., Py, Rev, Lesers, 18, 1200 (1967), by permission.)
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B. Scattering at Low Energies

The phase shift expansion (24-17) may be used to exptess the differential
cross section in terms of the phase shifts

d 1 ; !
<= | T @ ) sin a,(k) Pilcos ) (2433)
a9 B| 7
We expect, on grounds of correspondence with dlassical theory, that the angulae
momentum involved in the scattering is bounded by ps whete p is the center-of-
mass momencum and & is the mnge of the forces. Thus we expect that

1P - (24.34)

With the sum in (24-33) limited, one can try, by fitting the differential cross
section measured at 2 number of angles o a form like

Lid = % Au(cos 6 {24-35)
e "
to determine the phase shifts for a finite number of Lvslues. There are ambi-
guides, for example, the cross section is umaltered when all the phase shifes
change their sign, burt these can be resolved with the help of theory, continniry
from low energies, and othet tricks of the trade. The hope is that one can leam
samething about the interaction from the phase shifts, which form empirical
data somewhat closer to the theory than the cross sections do.

" The connection between the phase shifes 5;(£) and the potential F{r) is via
the Schridinget equation; the radial equation will have a solution that asymp-
totically behaves as

Ri(r) ~ % sin [ér — % + Ea(é)] (24-26)

aside from an amplitude factor in front. Thus, given F{r), a straightforward way
to caleulate 3;(#) is to integrate che radial equation aumerically to values of r
that are far gut of the range of the potential, and to examinc the asymproxic
behavior. This is, in fact, what one does, but this does not give us any insight
into the propetties of the phase shifts. To learn more about the phase shifts, we
consider the square well porential, We found in Chapter 11, Section C thar
'

wn §;(k) = — r . {24-37)
where the ratio is obtained by matching the internal to the excernal radial wave
function (11-63)
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fikay  jilka) + (C/B) ni(ka)

(24-38)

“ixa) T ° jdka) + (C/B) milka)
in which
K= %’: (E+ Ve &= % (24-39)

the * denotes differentiation, with respect to the argument, and Vy > 0 for an
ateracrive potential, Thus

& (ka) ji(ka) — wjilka) i (xa)
.Em’(.éd} j](lw} - m;(éa) j:’(m)

tan 5ilk) = {24-40)

This is not a particulatly transparent expression, but it simplifies in some limiting
ses.
(2) Consider the case that

be 1 (24-41)
% do not insisc thac ks < [, Wich the help of the formulas (11-2%) and (11-26)
e gﬂt .
“'.? sl{»‘) 2+1 (Iia)?j-l_l {fl(ﬁ) — Kdfi (m) (24-42)

a5 . @+ P U+ 1) ji(xa) + 2’ (xa)

“afver a lirdle algebra. One can show that for lacge /, this drops faster than ¢ even
ka3 1. The behavior

tan §;(E) ~ d¥+t (24-43)

for ka - 0 is not estricted to the square well potential, but is true for all reason-
" ably smooth potentials. It is a consequence of the centrifugal barrier, which keeps
waves of energy far below the batriet from feeling the effect of the potential.
(b} For cermin values of the energy, the denominaror in {24-40)} will
vanish, so that at these energies the phase shift passes through /2, of more
genenally through (# - 1/2) #. When the phase shift is /2, then the partial
WAVE Cross section

L) ot aih) (24-44)

ci(k) = Z

has the largest possible value. One says thar when tan 4;() rises mapidly to
infinity and continues tising from — @, we have resonane scattering, ‘To justify
this terminology, and explain when resonant scatering occurs, let us consider
- & very deep potential, and also ! large, so chat

’a> I ka {24-45)
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We may then use (24-42) for tan &(4), and this wili become infinite when
' ¢4 1) jelka) + zafi/ (k) = O {24-46)

Since k2 3> 4, this condition is approximately equivalent to

mcm(m-!+lw)—sin(mﬂz+lﬂ')=0

£ 2 2
that is,
I4+1 ] I+1
te (m i w) ~tL (24-47)
2 ket
Since the right side is very small, the tesonance condition is
1 41
k2 — + w%ﬁr'i——":; (24-48)

p———

Centrifugel barrier

Approximate
locatiom of

energies of
TESDNANTES

.
o
r

Fig. 24-4. Skewch showing the square well porential with the centrifugal barrier
tail. The dashed lines represent the energy levels in an infinite square well of range &,
and the approximate locations of the scatvering resonance energies are indicared
on the tight. The lower one will be much sharper than the upper one.
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Now this is just the condition (11-50) for the existence of discrete levels in a
three-dimensional box, so that resomant scatreting occurs when the incident
eoergy is just such as 10 maich an energy level. Since E > 0, these levels are not
really bound stares. As Fig. 244 indicates, these ate levels that would be bound
states if the batriee were infinitely thick, It is not, but a paricle being scattered
ac jusc the right energy still “knows’' that there is a virtnal level there.

As (24-42) shows, the phase shift is very tiny for &2 small. Nevercheless,
as A« changes and goes through the resonance, 5; rises very rapidly, incressing
by m; thus the partial wave cross section (24-44) will exhibit a very sharp peak at
the resonant eneegy. This behavior (Fig. 24-5) is very similar to the cross section
for the scattering of electrons by He* at the energy corresponding to the (27)2
excited stete (Fig, 18-4). In the neighbothood of the tesonant enetgy, the phase
shift rises through x/2 very rapidly. We may represent this behavior by

_ et
tzn §; = E_ Em {24'49)
‘This leads to the partial wave cross section
A +1) wn's 45+ 1) [y(ea) )2
T itwnts R (E- B+ bGaTTT
{24-50)
B i) [
%2 [—
'
|
| E
Eg
tin? &;
E i
{
I
I
I
I
I
I
I
By ~E

Big. 24-5. The partie] wave cross section cotresponding to the phase shift sketched
in the uppet insert.
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This is the well-known Breit-Wigner formala for tesonant cross’sections. Agnin,
the behavior is not a peculiatity of the squate well potential, but is characeeristic
of li potentials that have a shape such that mewmstable states can simulate bound
states above B = 0 in it. We just note for completeness chat

az"’“‘)-—l 1+ftanﬁ;__1
flly=—"F—=1= itan &
2,} .
an & v(kaV /4

TRl — itnd) E— B—iy(bat (2451)

If there is nontesonant scareering that is appreciable, then the scartering ampli-
_tude is of che form

fith) = fE® + FI7°0 (24-52)

At low energies, the scartering is primarily in S-states, so that we may con-
centrate on J = 0. It is simpler to derive the phase shift directly than ro work out
(24-40). The solution inside the well that is regularat r = 0 is

#(r) = rR(¥) = Csin nr (24-53)
and chis is to be matched onto
#(r) = sin (ke + 3) (24-54)

the solution outside the well. The concinuity of (L/#)(de/dr) at r = a implies
that’

. kcot uz = kcot (ks + 8}
that is,

_ (£/x) tan kz — tan ke
" L+ (#/«) tan xa tan ke

@mn § (24-55)

Note that if we define

mnqa=il:a.nm
K

tan ga — tan e

=1+tanqatanb4=mn{qa_éd)

tan &
that is,

§ = man™! (% tan m) — ba (24-56)
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We have, following (24-39),

2mVoa®
ﬁ!

{m)‘_ = (ka)* + (24-57)

with Vo > 0 for an attractive potential. Thus, at very low energies, using
mn & o x for x < 1, we ger

tan § = § = ka (m“ 5 _ 1) (24-38)
ket

When &2 goes through x/2 (we imagine that we are slowly deepening the po-

tential well), which is just the condition that the well be deep encugh for a

bound state to develop {cf. Chapter 13, Problem 1), then tan ke — = 2nd (24-55)

shows that

tan § = — m {24-59)

tan ka
that is, & goes through /2. In a sense, a bound state at zero energy is like a
Csonance.
As the well becomes 2 lictle deeper, we agnin have tan & ~ 0 {£a), and
continuity demands chat the bmoch is such that

b= ka (“‘:“ - 1) (no bound state)

= x+ ba (M - 1) (with bound state) (24-60)
[ 74

As the potential hecomes still deeper, a second bound state can appear, k2 goes

chrough 3x/2, and we have § = 2x 4 Aa{tan na/ea) — 1], and 56 on. Thete isa

general result known as Levinson’s Theorem, which states
é(0) — #{ee) = Nar {24-61)

whete Np is the sumber of bound smates, and the above is an example of it.
At very low energies the cross section only has the 7 = 0 contribution te it, and
it is i

¥
. ! 2 H]
== FW (ba)? (m::' — 1) = 4gq4t (m::“ o 1) (24-62)

that is, it is = constant. There will, of course, be a correcrion of arder (£4)? to this
tesulr. If we consider neutron-proton scattering, then we know that the potential
tnust be such as to give the right binding energy of the deuteton. If we let
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and
Zml|
k= e T
(efectively £ S— for the bound state problem), then the macching of the

wave function ourside the potential #(r) = A ¢~ to the solution inside B sin vr
at the boundary gives

KCOLRt = —t {24-63)
For £ <€ &, we have
(tsm m) o (tan m) o 1 (24.64)
k% Jocaw K&/ dewtczon aa
‘Thus
132 dar
¢ 22 dpa? (l + "—) g —— (1 + 2aa) (24-65)
e [1]

Thus making the low ensrgy approximation expressed by (24-64) allows us to
bypass the problem of determining the potential and ffer calculating the cross
section. The spptoximation only works when the binding enetgy is small,
The quantity 1/e is the distance aver which the deuteron wave function spills
over, and this is always much larger than the range of the potential # for a
locsely bound system., It is 1/« and not the-renge of the potential that determines
the scattering cross section at Jow enetgies.

In the 1930s thete was great interest in che form of the ncutton-ptoron
potential, since it was hoped that this would give some fundamental clues con-
cerning the nuclear forces in general. Rudimentary expetiments at low enetgies
were fitred with a variety of potentizls. It became evident after a while that almest
any zeasonably shaped potential would work, provided that one chose the
appropriate depth and mnge. It was shown in 1947 by Schwinger (and subse-
quently detived by Bethe in a simpler manner) that at low energies ir is always
4 good approximation to write

1 1
Bootd = — — + = k! 2466
cot § T13 rok ( )
where A is called the scatceting length, and ra is the effective range. The cross
scction ar threshold determines the scactering length
g == dgA? (24-67)

and the enetgy dependence determines the effective range. The relation between
these patameters and the parameters describing che porential vary with the shape,
but & two-parameter fit to the daca is always possible. This effective range formula
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shows that if we want to probe the shape of the potential, we must go to highet
Energies,

The binding energy of the deuteron is 2.23 MeV. Thus, remembering ¢hat
in our discussion m is the reduced mass, that is, M,/2,

ﬁ,’ Fe £ [Me

1
e T VMAE Mg\ E
10 240

o = 4. 10—
TG X W0 X 3 10W Y 2.23 3 X cm

so that
' dr

aﬂ

=25 ¥ 100H ¢m? ~ 2,5 barns

A more accummte determination feads to the prediction thax the cross section at
threshold is 4 barns. The measurement, carried our with neurtons at thermal
speeds yields 21 barns!

The explanation of this disagreement came with the realization that the
spin of the peutron and the proton had not been taken into account. If the
potential wete spin independent, then all spin states would scatter the same
way, that is, it would not matter whether the spins of the particles are “up" or
“dowa." If the potential does depend on she spin, a possible form could be

Vir) = Vi(r) + 6, d.Fulr) (24-68)

In this case spin is no longer & good quantum numbet, and the states must be
classified by total angular momentum and total spin, that is, with / = 0, the four
states divide up into & 25, triplet of states, and a singlet '5,. These need not
scatter the same way, so that there are 1eally two phase shifts, 8, for the tripler,
and 5, for the singler. There are no triplec-singlet tramsitions, since the total
angular momentum j must be the same in the jnitial and fipal states. The total
cross section is weighted by cthe number of final stares in each case {the cross
section iavolves a sum ower final states and is independeut of the value of the
z-component of the angnlar momentum), so that

3 1 .
o= + pLO : (24-63)
Fot spin independent foices, o = ¢ = o,
The deuteron is a %5, state, so that the four barns are really predicted for oe.
This implies chac
= de — 30, = 7Z barns (24-70}
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Since we are at threshold, this implies that

—1é
| 4] =, ﬁ%ﬂw =~ 24 % 100" cm {24-71)

The earlier resule implied chat

. f-i 10-%
A = XT 2247 X 107% cm (24-72)

The question of the signs of A; and A, now arises. At threshold we have
kot é = £/5 o —1/Asothat §, = — Ak and 8, = — Ak, Thus, the asymptotic
wave functions have the form

sin (Br + 6,.) =~ sin &{r — A;,) = Br — Ab) {(24-73)
The two possible cases are shown in Fig. 24-6, We know thac for the triplet stater

the wave function tutns over just before the edge of the well (since there is 2
bound state), so that it must correspond to the situation 4, > 0.

@)

\
4

&l

Fig. 24-6. Skewch of the s-wave solution #(r) near theeshold. Qutside the range
radius r = #, the wave function has the form G{r — A). [This is oot in conBice with
(24-73), which is an expansion of sin (k¢ + §). We could equally well have taken
the form of s{r) to be (C/&) sin (kr + 5), since the noanalization is acbitrary. It is,
in fact, the interior wave function and the position of A thar determine the slope
of the line.] The sign of A depends on whether the intetior wave function has or
has not tamed over [cases (3) and (), respectively] Since the wave function must
tarn over if there is a weakly bound state {s0 that it can macch a slowly falling
exponensial) and since one does noe expect the wave Funcrion inside the potential

" 1o be very sensitive to variations in E about zeto, one expects thac for & porential
thar has a bound srate with Fp small, A > 0.
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I A, were positive too, one wonld expect 2 singlet bound sate, with
very much weaker binding, since the internal wave function ties onto a much
fatter asympeotic form. In fact, the binding energy would be 70 keV. Such 2
bound state was not found, sugpesting that A, < 0.

This- choice of sign was actnally confirmed by the scatcering of neutrons
off the Hy molecule. As we know, the Hs molecule can exist as ontho-H,, with
the spins in a ttiplec state, and para-Hs, with the two proton spins in a singlet
state. For neuttons ae very low enetgies, such thart che wavelength is much larger
than the proton-proton sepatation in the molecule, the scatteting amplitude for
neatron-Hj scatteting is just the sum of the amplirudes for the individual
scatterings. One may show thar the amplicude off para-H, is different from the
amplitude off ortho-H, and these sepasately involve linear combinations of A,
&nd Ay The fact that o, 2 3.9 batns, while oo, 22 125 bams can be explained
in this way. The calculation is complicated by a npumber of effects thar must be
taken into acoount, for example, that the effective mass of the ptoton io 2 male-
cule is differeat from that of a free proton, and that the molecules are not really
at rest, but are moving with 2 distribution approptiate to the (low ~ 20°K)

‘temperature, The large disceepancy between the two cross sections is nor
chapged much by these corrections, and it can only be explained if A, is indeed
negative, i

C. The Born Approkimation

_ Ar higher enetgies many partial waves contribute to the scawering, end it
is thetefore preferable to avoid the aogular momentum decomposition. A pro-
cedure that leads to a very useful approximation both when the potential is very
weak and when the caergy is very high is the Born approximation, in which we
consider the scatsering process s a transition, just like the ttaasitions studied in
Chapter 22. The difference is that here we consider the transitions

continuum — contipuum

If we work in the center-of mass system, we have effectively 2 one-particle
problem, and this perticle makes a transition from an initial state, described by
the cigenfunction

Wlr) = ﬁ o (24-74)

10 the final stace, described by

1
"J’ (‘.l‘) = ‘\/17

LA (24-73)

where p; and py are the initial and final momenta, respectively. The transition .
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rate, following the Golden Rule (22-33} is given by

o= [V 2 _ ﬁ) -
Rl-.l' = F I(Z‘Iﬁ)s | !ilg a(zm Im (24'76]

The delea function expresses energy conservation. If the particles that emerge
have 2 diffetent mass from those that enter, or if the target is excited, that delta
function takes a somewhat differens form. It will, however, always be of dhe form
8lps*/2m) — E] where E is the energy available for kinetic energy of the final
pacticle. The matrix element My, is given by

—rp,r [ 213 em [ 74.]
14 = | &t v
= iy = [ v o
= —;, f Ar e 2T Vix) (24.77)
A= :—i (pr — pi} is the mementum dransfer. We write the matrix clement as
1 -
My = ? yia) (24-78)

‘The incegral in (24-76} may be tewtitten in the form

Ry = fdﬂVP’z'#’ 1v(n)|=a(*’—f—£)

{2ah)?
_ 2 i M _ 7 2
- T f 4pym ( E)W“"
- s [ sl (2479

To get che last line, we noted that pydpy/m = d{py*/2m) and carried out the delta
function integration, Thus, #; must be evzluated 2t gy = (2mE)V?, and we must
not forget that m here is the reduced mass in the final state.

This expression has an undesirable dependence on the velume of the
ql.l.ﬂﬂtlzﬂ.tlon hox, but this is not really surprising. Our wave functions wete
notmalized to one particle in the box 1, so that the aumber of cransitions shouid
certainly go down as V- increases. This difficulty arises because we are asking &
question that does not cotrespond 10 an experiment. What one does is sepd a
flux of incident pm'tu:lcs at each ather (in the center of mass frame; in the
laboratory, oae particle is stationaty, of course). If we want a flux of one particle
per square centimetes per second, we must muliply the above by V divided by
the volume o 2 cylinder with 1 cm? base, and the relative velocity of the particies
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in the center of mess frame in the initial state. The number of ¢ransitions for unit
flux is just the cross section. We therefore have

do = — .I AQpm| V(a) 2 {24-80)

45 v
Since in the centet of mass frame the two mudenx particles are moving toward
each other with equal and opposite momenta of magnitude p;, their selative

velocity is

Y IS SN b SR S N .
1”“’1"m,+m,_""('+ )m'(;)‘j (2481)

i e
if m; and m; are their masses, Thus, if the inidal and final reduced masses and

momentz zre not the same, we have

U' 1 4y
- %,ﬂmﬂm

% V(a) ‘ : {24-82)

When the initial and final pardcles are the same,

do
0 4

I - z
- V(A}‘ (24 83)

When one particle is a great deal more massive than the other, mq —+ #, the
mass of the lighrer particle. When we compare the above with (24-15) we see that

fo8) = = 2= jra) (24-84)

T
Actually, to determine the sign, one must go through a more detailed compatison
with the partial wave expansion, We will not bother to do this here,

As #n illustration of the application of the Born approximation, we witl
calculate the cross section far the scattering of a patticle of mass mand charge Z,
by a Conlomb potential of charge Z;. The source of the Coulomb field is taken
to be infinitely massive, so that the mass in (24-83) is the mass of the incident

particle. Fot generality (and, as we will see, for techpical reasons) we reke the
Coulomb field to be screened, so dhac

—rfa

V) = ZiZy e C (24-89)

where z is the 5crecning tadius. We thus need o evaluate

—rfa
PA) = 2.2, @ f o {24-86)

r
T
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We choose the ditection of A as z-axis, and then get

—is-r e ar T ® —iarcos e~
Fre —_—= dp | sin 69 #3dr ¢ —_—
¥ ° ] ¢ r

. o L N
= 2= f rdr e_'/‘f dcos §) ¢~
L[] -1

]

T _ . "
SL A g — D)
A Ja ’

_2r ( 1 1 ) _ 4r
T \(/e) —a Q/a+ i) e+ A
{24-87)
Now

J

8= - = (3~ 2R = () (2480)

3o that the ctoss section becomes

p m 1 : L
T (Z:Z#%) [@p*/FD (1 — cos B) + (1/A

_ ( YAV A )’
~ \dp?sin® (8/2) + (B &)

. Z.Zt 2 I
-(@wan {ﬁsfzmz)) (24.69)

Io the last line we replaced p*/2m by E, and we used 31 — cas &) = sin® (§/2).
The angle & defined in (24.88) is the cemter of mass scattering angle. In the
absence of screening (# — <) this reduces the well-known Ruthedord
formula, Thete is no % in it, and it is the same as the classical formula. Had we
left out the screening factor in (24-86) we would have had an ili-defined inregral.
One often evaluates ambiguous integrals with the aid of such convergence
factors.

_ The Botn approximation has its limitations. For example, we found that
i7(A) was purely real so that £{8) is elso real in this approximation. This implies,
by the optical theorem, that the cross secrion is zeto. In fact, the Born Approxi-
marion is only good when either (a) the potential is weak, so that the cross
section is of second order in 2 small parameter; this would make the use of it
consistent with the oprical theorem, ot (b} ac high energies for potentials such
that the cross section goes t zern. This is true for most smooth potentials. It is
pot true for real patticles; there it seems that the cross sections Sty CORStant at
very high encrgies, and one caonot expect the Bom approximation t6 serve as
meore than & gunide of the behaviot of the scattering amplitude.
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As a final comment, we observe that if the potential ¥ has a spin depend-
ence, then {24-77) is trivially modified by the requirement that the initjal and
final states be described by their spin wave funcrions, in additica to the spatial
wave functions. Thus, for example, if the neutron-proton potential has the form

Vir) = Vilr} -+ dp - dn¥lr)

the Born Approximation reads

1 ;
My = —fd’r P E? Ve &
¥
where £; and £ represent the initial and final spin states of the neutron-proton
system.
D. Scattering of Identical Particles
When twa idenrical parndes scauer, there is no way of distinguishing a

deflection of a particle through an angle #and a deflection of ¥ — ¢ in ¢he center
of mass frame, since momentum conservatiog demands that if one of the particles

Fig. 24-7. Asymptocic directions in the scattering of two identical parricles
through a center of mass angle 4.

. L}
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scattets through &, the other goes in the ditection = — 8 (Fig. 24.7). Classically,
too, the cross section for scattering is affected by the identity of particles, since
the number of connts at 2 cermain counter will be the sum of the counts due o
the two particles, Thus

7a(f) = o) + o(w — £) {24-90)

In quanmum mechanics theze is no way of disanguishing the two final states, so
that the two ampiitader (8) and f(x — 6) can interfere. Thus the cross section
for the scartering of two identical spin zero {boson) particles, for example,
a-patticles, is

dv _

FO+f— (24.91)

This differs from the classical result by the interference term

Lo = O + | fir— 01 + [0 flx —9) + 0 Pix — 0] (50)

and it leads to an enhancement at x/2, for example,

(_j%),;, =41/ (L)g:s (24-93)

A
compared 1o the result that would be obtained withour interference:

().l G) 20

When the scattering of two 5pin 1/2 particles is considered, for example, proton-
proton scattering or eféctron-electron scattering, then the amplitude should
reflect the basic antisymmetry of the total wave function under the interchange
of the two particles. If the two particles age in a spin singlet scate, then the spatial
wave function is symmerric, and

de,

F 7]
If che two particles are in a spin criplet state, then the spatial wave function is
antisymmettic, and '

= |f®) + fiz — 0)[® (24-95)

dﬂ'l 4
o= 1f®) - fr - 9) (24.96)

In the scatteting of two unpolarized provons, all spin stares are equally likely,
and thus the probabilicy of finding the two protons in a triplet stare is three times
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»s lasge as finding them in a singlet state, so that

= HfO) — fir — &1 + 31O + [ — B
=@+ iflr— O — D - O+ O fx—8)]  (2497)

For proton-proton scattering as well as for @ — a scacceting, the basic amplitude
£8) is the sum of a nuclear term (if the energies are nat too low) and a Coulomb
verm. Whether the identical particles be bosons ot fermions, there is symmetsy
under the interchange ¢ — x — 8, ”

Symmetry considerations also play a role in the scattering of particles by &
crystal Jattice, If we ignore spin, so thet we do not have to worry whether the
slectron does or does not flip its spin (Cup” — “down” or vice versa}, then at
low energies, the scaueting amplitude f8) is independent of angle (S-wave
catteting), and the solution of the Schridinger equation by & single atom
located at the Jattice poiat a; has the asymptotic form

k| —ai|

VO~ M (2498)
Now
ke — a;| = k@ — 2r - a; + 2P
) g\ L
o (1 _ Zr’Sa.)
o2 fr — kb - aq (24-99)

and since ki. is a vecror of magnitude £ and it points in the direction r, the poine
of chservation, if is the final momentum k'. If we divide ouc the phase factor

¢~ % the wave function has the asymptotic form

b~ ‘:'I.' - f — - me ‘ik lr _l_ 0 ( :2) (24-1“})

50 that the scattering amplirude is
fA=f*™ A=K~k (24-101)

The total amplicude is the sum of all individual scattering amplitudes when we
have a situation in which we caonot tell which atom in the crystal did the
scartering. This is indeed the case for elastic low-energy scateering when receil
is not observed 2nd spins are not measured. Thus, for the coherznr process we have

dv

—Ja »

(24-_102)
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If we have a simple cubic array of latice poines, such that

B = alnds + mty + 0d;) — NZ o, SN (24-103)
{spacings are integral multiples of 4 in all ditections) then

. N N N . )
P T S SR S P o

gp=—MN m=-N m=—N

N
p ch'=e”if"N(1+ei“+ez'h+...rzm)

-—N
* LN FENAD D e
- A1 S |
EMN-H.J'Z) — '—I_H[N'HJZ} sio (N + %) .
= I gt - sin a/2 (24-10%)

e obtain che result |

sin? ax(N + 3) sio’ a(N + 3} sin®a(N+ 1)

= 7 sin? o, /2 " sin® /2 sin? o,/ 2 (24-105) E

where

@ = ah, — 2Zav, (v, = integer), etc. {24-105)
We can make the generalization exhibited above, since a change a — « — 272,
with # an integer, does not change (24-103). The expression (24-103) is not very
uansparent. However, when N is large, each of the factars becomes very strongly
praked when o, . . . are neac zero. In face, using

sin® Nu
#2/4
a formula easily derived from (22.36) by a simple change of variables, we get

— 4xN i(z) (24-107)

% = |f|® (2xr}* (2N 8(ah — 2xv) (24-108}
Now the total number of atoms is (2N)? end hence the cross section per atom is
— - & ( ~ k- %’) (24-109)

Thus the differential cross section is very small, except in the ditecrions given by

k' —k=:v (24-110)



Collision Theory 403

where it is siongly peaked. The conditions above are called the Bragg conditions,

| the inregers vs, vy, v, are called the Mifler indices of the Brage planes.,

The relations just derived can be generalized to more complicated crystals.

y ere used to study aystal suucture, using nentrons or X-rays es incident

les, or using a known crystal to study X-rays that are emitted in atomic
nsidons involving energetic photons.

Problems

1. Show thar for 2 central potential F{x) = P{r), the mattix element My,

My, = —;f 4%‘& : r & V{r) sin rA

te chat this is an even function of A, that is, a function of
A* = (p; — p)*/R

2. Consider a potential of the form
V({r) = Vae ™

* Calculate, using the Born Approximation, the differential crass secrion do/4G as
a fuaction of thé center-of-mass scattering angle 6. Compare your result with
the differential cross section for 8 Yukawz potentizl

—r/b

V() = Vb -
. r
[Altezdy done in (24-85}-(24-89)]. To make the comparison, adjust the parame-
ters in the two cases so that the two differential cross sections and their slopes
ate the same in the forward direction at & = 0. It might be convenient to
pick some definite numerical values for Vg, Vs, 2, and & to depict this graphi-
cally. Can you give a qualitative argument explaining the large difference berween
" the predictions for large momentum transfers?

3. Gonsider the potential
—ru

. Vie) = Vs
If the range parameter s @ = 1.2 fm = 1.2 X 107" cm and F = 100 MeVin
magnitude, what is the total cross section for proton-proton scattering at 100
MeV center-of-mass energy, calcukited in Bom approximation?

: . * :
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(Nose. This calculation involves a numerical integration. It is useful to use the
relarion

Bt = (pr — P = 21 — cos6)

[0 write

40 = .21 d (cos 8) = %d{&)

and do the integration between A* = 0 and &? = 4p%/%.) Give your answer in
millibacns (1 mb = 1007 cm?).
4. Suppose the scatreting amplicude for neutron-proton scatteting is given
by the form -
£ = &} (A+ Bap- o) &
whete £ and Er are the initial and final spin states of the neutton-proton system,
The possible stawes are

fo= XD X £ =P X
X7 Y P A
2P Y xp XY
P &
‘Use
ip - gy = a7 4 26 DAY 4+ AT
where

. _e.tiey (01 J_a.—ia,_ o0
+ 2 0o -T2 T \1e@e
!

. .. 1 0 A {0
in the reptesentation mwhu:ha-,-—(c 1 )md xt = ( o ). = ( i )

to calculate all 16 scattering amplitodes. Make a wmble of your results and also
tzbulate the cross sections.

5. If any one of the spin states (e.g., initial proton, or initial neutron, etc.)
is not measured, the crass section is the sum over the unmeasured spin states.
Suppose both the initial and final proron spins are not measured. Write down
expressions for the cross sections for the final neutron "up™ and the final neutron
“down,” given that the initial neuteon state is "up.” What is the polarization P,
defined by

ALY
st +al
whete o1 is the cross section with the fnel nevtron up and 50 on.

&. Use the table computed in Problem 4 to calculate the cross sections for

triplet — triplet and singlet — singler scatteting, respectively. Show that triplet—
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singlet scatteting vanishes. Check your resules by ebserving that since (in units
of &)

Yop+ dig =8
one has
28t — 3

ép - Oy

= 1 when acting on triplec stare
—3  when acting on singlec state

Mote that the amplitude is independent of mg so that ms must be the same in the
initial 2nd final spin staces. There are three states in the wiplet, all contributing
an equal amount to the cross section, and only one to the singlet cross section.

(Cawtion. In calculating amplitudes such as
1 i
BVE WPE? — 1P T)A + Bop - dx) PV o = AP

the amplitudes are added for the four rerms before squaring. Can you explain
why?) )

9. It can be shown thar the soludon of the / = ¢ Schrédinger equation
for the potential

—ar
¢

s

Vi) = —28\

which behaves asymprotically like ¢
ar 2@+ D)+ AB - 1)
Be™+ 12k - N

The solution that behaves asymptotically like # " is F{—4,7). Thus the regular
solution, which vapishes at r = 0, is

(e} = [F{k,0) F{—kr) — F{—k0) F(kr)]

Use this information to obtain the scattering amplitude F(k) = [S(8) — 1]/2ik
Discuss the solution for various limiting cases.

Flbsey = e™
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2
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chapter 25

The Absorption of Radiation
in Matter

The ptocess that is the inverse of radiative decay of atoms, namely the

yrure of photons accompanied by the excitation of atoms, can alsp take place.
photon energies exceeding the ionizaton energy of the atom, the elecoon

tited ta the continuum. This is called the phororlecrric ¢ffect, and is an im-

portant mechapism in the abhsorption of nadiation in marter.

. According to the Golden Rule (22-53), the transition rate for the process

. v+ (atom)} — (atom)’ + ¢ {25-1)
is given by
_= (Ve _ g, b
R= % () | Myl ﬁ(ﬁw . Ex 2#:)
= 2_"' AV pe 2 T
= RO = I ORI
_ ¥ .
f (2 fﬁ), | My {25-2)

In the above expression, m is the electron mass, the delta function sepresents
entigy ronservation, Eg is the magnitude of the binding energy of the elecuon
in the atom, and in the last line, . is evalvated at the vanishing of the argument
of the deha function.

The matrix element is given by

(21-5:’) f ST e p T ) {25-3)

‘The vector potential is normalized, as in Chaprer 22, to one photen in the
volume V, and ¢:(r}, ¥(x) are the wave functions for the electron in the inirial

. . 409

Ric
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and final staves. 3 we consider a hydrogenlile atom, and assume that the electron

is in the ground state, we have
1 (ZN" _za '
i) = v : & {25-4)

I+

The finial-state wave function should be taken to be & solution of the Schrddinger
equation with a Coulomb potential with E > 0. We did not discuss these solu-
tions when we studied the hydrogen atom. They cen be written in closed form
but they are quite complicated, us is the integral in (25-3). If the photon energy
is much larger than the ionization energy, then the residual interaction of the
outgoing electron with the ion that it leaves behind becomes less important,
and we may approximate Y(r) by a plane wave. Since we assume that we only
have one atom in cut volume, we will have only one electron in the volume, and
hence the normalization is such that

i .
. = —— ¥ 25-5
¥ (1) N7 (25-5)
The factor V that appears in the phase space [ @®p/(2a#)%] corresponds to the
same normalization, that is, the two factors are not independent. The squate of
the matrix element is somewhat simplified since the fipal state is an eigenste
of momentum, sa that

/e P é’t"“} =t ‘Pc{fl‘jk‘“} {25-6)
Bence the square of the matrix element is

| Mps]? o (_’_) Zmle 11 (1)3 (¢ - po)?

mc)
2

X ' [dar FEmmor = Zrfa (25-7)

We will evaluate the jotegral later. At this point we note that the rate again hasa
1/V behavior duc to the fact that we are dealing with.a single photon in the
volume V. Instead, we will consider the cross section for the photaelecuric
effect. To have a flux of one photon per square centimeter we must have a densicy
of phatons 1/¢ per cubic centimeter (so that a cylinder of unir acee base and
length ¢ corresponding to a time interval of 1 sec contin one photen), chat is,
we must multiply the tate by ¥/e. We get, combining (25-2) and (25-7} the
differential cross section

de 2w mp. e 2mRe 1 _Z_)*‘ oy
a8k (2dk) (m:) w w (du (€ pa)

EH

x L‘ fdﬂr FE—pesny e —Zela
¢ .

(25-8}

N
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I this expression 42 is the solid angle into which p. points. The integral over all
electron directions yields the total cross section o for the photoelecmic effect.
If the target avoms are distributed with 2 density of N atoms per cubic centimeter,
then in a slab of tagger marerial of area 4 and thickness 2, there are NA dx targer
atoms, Each atom has a cross section o fot the reaction under consideration, so
that the total effective area presented co the beam is N o dx. If thete are #
incident particles in the bombaeding beam, then the number of particles that
interact in the thickness dx of the target is given by

interacting particks  ross section
incident particles tow] atea

that is,

4
dn_ Nk Nk (25-9)
n A

The minus sign indicates chat particles are removed from the beam. Integration
gives

—Nox

#x) = nmoe (25-10)

whete 7y is the number of incident partides and #{x} is the number of particles

"left in the beam afeer traversing 4 thickness x of the target. The quanticy A =
1/ N has the dimensions of a length, and is called the mean free path. One some-
times speaks of the mean free path fot the photoelectric effect, for pair produc-
tion, and so on, even thouph what is measured is the cross section,

To get an idea of the magnitudes of mean free paths, note that N = Nup/A
whete Ny = 6.02 X 10% is Avogadro's Number, p is the density in grams per
cubic centimeter and A is the atomic. weight. Cross sections for moleculas
collisions can be estimared from the properties of gases, and they tutn out to
have magnitudes of the order of 107'¢ cm?, consistent with the fact that atomic
dimensions are of the order of 10~% cm.! Is this o reasonable guess for the photo-
electric cross section? We shall soon examine the zeasons for why it is not.
In the meantime we write the mean free path in centimeters, in a marerial of
density p and atomic weight A, with the cross section expressed in units of
107-% ¢m?, called berns thus

L_1_A__ 1
Ne p 602 X 10% ¢
A 167
== -1
p o (barns) 25-11)

1By the same token, nuclear cross secrioms tend o be of the order of 16-* cm?®
(batns), patticle physics cross secmions are of che order of (07 em? {millihams), going
down to microbarns for rarer reactions, and even down o 10— cm? for che extremely rare
neatrino reactions at low eoecigies.
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To evaluate the cross section in (25-8) we need to work out the integral
f P OB T e (2512)

If we use the integral evaluated in {24-87), which, with a slight change of nota-
tion reads

f e D I (25-13)
we can, by differentiating with respect to g obtain
. —fAr 8'“

fd‘fe A F”=m {25-14)

50 that we can finally calculag the cross section. After some judicious combining
of facrors, we end up with

. _ NVZAYIE DY 1
£ e (ﬁm)( P ) (7! + aath (25-15)

(ik — p.) _ (py— po)
1 3

where

A =

Since the electron and photon energies are related by

o = Ea + P—“ (25-16)

we see that for energies quite a bit above the binding energies, fiw =2 p 2/ 21m.
Hence

BLALE L 2!'«: .
L) =ted

me

[4

1 1 [ fhayd B o~ s
A2 = ‘E;(p,—p,)’= ﬁ_ﬂ[(_) —2Tp¢p,-p.+pﬁ]

o P2 Tes s
S\l PP (2517}
for nontelativistic electroas, p. << me.* We have used the notation p, = ik for

2 For relativistic #lecrrons one should really use the Dimc equation 1o describe the
process, Bffects other than the photoeiectric effect are more important when Ee 2x 1 MeV,
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the photon momentum, aad as usual the ~ denotes the uair vecror. Thus
B azrar (.1'1) . (e 9.
A me b o ~ Y|
1:22 + 2,”22(1 - Tpe 'P'r)]
642‘:1’#02 (!i.) (; . E.JS
[(«zr 2 (- 250 )] (25.18)

If we choose the photon ditection to define ¢he z-axds, and the two phoron
pelariztion directions ™, e® to point in the x- and y-ditections, tespectively,
then, writing

p. = (sin @ cos ¢, sin 8 sin ¢, cos @) (25-19)

we have (p. - ¢®)? = sin? & cos® ¢ 2nd (p. - @) = sin? ¢ sin? ¢ so thac the
average of the numerator over the two polatization directions (we are calculatng
the phowoetfect cross section with unpolatized photons) is

(Po- ) = ¥ (sin? O sin® ¢ + sin? Bcos? ) = Lsin?@  (25-20)
also
Ps- Py = €050 (25-21)
so thar, writing p.2/2m = E, we get :
| dr 3242 ZfaPag(Efmct)V sin® ¢

2 P vn |

For lighe elements, the condition that we imposed easlier, fiw > Ep, which is
equivalent to

E» } m*(Za)? (25-23)

is satisfied over rensonably wide range of cnetgies. If we insert (23-23) into the
cross section, we find that che denominator simplifies, and we get

e B\ sin @

L — a2 Tt | — .

20 V2 ekt (mc’) ( v, )‘ (25-24)
l_ - -:— cos #

Let us discuss various aspects of this formula.

(1) First, the vague guess that since atomic sizes tend to be of the order
of 1072 ¢m, the cross sections should be of order 1072 ¢cm? is wrong! Ft is true
that the factor 4® is of thar magnitude, but it is multiplied by {1/137)5% whichis

- e .
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dimensionless, buc hardly negligible! We should try o understand how one
could be so wiong in ordet to have some guidance what one must be caseful
about in making estimates. If we ignote the last angular factor, which we will
discuss later, we see that we may, with the help of

E=1m2?

write the facvor in front as

Tie hi
202 #*Zi0t (%2) = 32m?Z%" (—‘—)

ay Y2 7 A 7 .
() n

This is 2 more useful form. It shows, fitst of all, che presence of a single factor o,
which should always be present when a single photon is emitted or absorbed.
‘The coupling of the vector potential to a charge is proportional to the charge ¢,
and the square of this will lead to the e, The factor {#o/Z)* is 2 better measure of
the atea of the atom than &, since we atc considering a hydrogenlike atom of
charge Z. Whar remains is a rather high power of the ratio of the “orhiral”
velocity of the electron in the atom to the velocity of the outgoing free
elececon.,

It is the ratic (aZe/v.) [rather chan just {¢/v.), which is also dimensionless]
that appears, because the matrix element involves the overlap between the free
electron wave function and che bound electron wave function, that is, the square
mattix element is related to the probability that 2 measurement of the mementum
of the bound election yields p,. The functional dependence feZr/s.), in this
case the cighth power,? cannot be guessed ar on geners! qualitative grounds.
For example, if the electron wave function wete Gaussian [f{r) = e, the
falloff with incteasing velocity would be much faster than the eighth power.
The reason why a guess is hard to make is that the momentum disttibution of
the elecrton is focalized in & region of spread

] 1Y

Ap o —— o~ ~ -
Y iz e Zomc (25-26)

and fot p, 3> Zeeme one is far out in the tail of the momentum distribution. This,
again by the upcerminty relation, depends on the small r-distribution of the
wave functien, and depends sensitively on the state, in paccicular on the angular
motmentum, This does make photo-disintegration in nuclear physics a vety
useful tool.

S There is a factor §, in the phase space so tha the mawuix clement squared gives an
eighth power of (ucZ fve).
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(2} The angular discribution of Jo/49 is given by

sin? 8

FO) = =73 cos 011

(25-27)

We note, first of all, that the cross section vanishes in the forward ditection.
This is a consequence of rhe fact that photons are transversely polatized. The
marcix element is proportional to p. - ¢, and when p, is parallel to the photon
momentum, this factor vanishes. The factor in the denominator has, because of
the foutth power, 2 strong influence on the angular distribution. When v./¢
approaches unicy, this becomes very dramatic, but even for moderate #,/¢ there
is significant peaking in the near forward direction, where the denominaror is av
its smallest. This cotresponds to the minimum value of the momentum transfer
between phaton 2nd electron (p, — po®.

More detailed calculations need w be done to cover the relativistic region.
The formula derived above works well in the region of its validity.? At very low
energies, a more acourate wave funceion for the ourgoing clectton must be used.
Such a wave function will teflect the Coulomb interaction between the nucleus
and the elecuron. There will, of cowrse, be no photoeffect below the thresheld for
ionizing the least-bound electron from an outer shefl, As the energy increases
above the threshold, electrons from deeper shelis will be photoproduced. If one
plots the integrated cross section, or preferably the maw absorption cosffucient®
Ne/p, as a function ¢f the photon wave Jength, one finds the deca shown on
Fig. 25-1. The so-czlied K-edge corresponds to the gjection of the » = 1 elec-
trons; the L-edges cotrespand to the various electrons in the 7 = 2 states. The
edges occur at the binding energies of the various elecrons. Moseley’s empirical
law states that they are located at

: —_ 2

E=136 % ev {25-28)
where ¢, the "“screening constants,” ate approximetely given by 4, = 2n +- 1,
This formula is just what we expect for the s otbitals, 2nd the screcning is che
effect of all the other s electrons.

At relativistic energies the cross section drops less precipitously, with an
(E/=)~" behavier instead of (Efm) ™" but by the time enczgies of 0.5 MeV are
reached, the photoelectric effect ceases to be of any importance as far as the
absarption of radiation is concerned. In the enetgy tegion of 0.5-5 McV, say,
it is-the Compsor Effect that is the dominant absorptive effect.

Here froc electrons scacter photons. At Jow frequencies che effact can be

4In calculating absorprion of radiation, the resalt thar we derived must be mu.ltaphed
by 2, since there are two eleawons in the ground state, #xcept in hydrogen.
- 5This is equal to No o/ A where Ny is Avogadm s number and A is the atomic weighr,

il
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Fig. 25-1. Mass absorption coefficient Ne/p for platinym as 2 funcdion of phaton
wavelength.

pnderstood classically; electroms gnetic radiation impinging oo the clectron
accelesates it, and the radiation emitted by the accelerated chacge is the scattered
radiation. The classically calculated Theauwn €ross section is

&x ( P )t
= =t = 25-
or =\ (25-29)
In quantm mechanics, the scattering amplitude {marix clement) must be pro-
pottional to ¢, since two photons are involved. Since the pertuchation in the

Hamiltonian is
¢ é
. = A% K
P A + Py~ Alr) (25-30)

when both terms in the expansion of (22-11) ate kept, we see thao an ¢* contri-
bution to the scarteting amplitude can come from two sources.

(i} the first souce is a first-order contribution from the term £A%(r.)/2me*.

(ii) the second source is a second-order perturbation term from the
coupling ep - Aes)/me. Since we have pot developed the second ordet
perturbation formalism, we will restrict ourselves to stating the results.

{a) Ar threshold, with the gauge thac we have been using, v-Alrs) =0,
the whole amplitade comes from the term involving £PA(r )/ 2mct.

{b) The matrix element in second order has the form

-3 {f|ep-Afmc|n)nlep-Afme|i)
] E. - Ei

{25-31)
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where the “sum” over intetmediate states “#™ also implies integration over all
the momenta, when '»” includes continuum states.® It is not enough to include
intermediate one-clectron states corresponding to the sequence

"n+ Si—lbl!—b'r_r-l-é_f

and the intetmediate states containing an electron and two photons, correspond.-
ing to the process

atvi2vituti-onwty

It tutns our that it is necessary to include the possibility of the “virtual”* creation
of an eleciron-positron pair by the incident photon, followed by the anaihilation
of the positron by the incident electron, with the emission of the final photon, as
in

atri—ateate’ oyt y
and the process
it ri—~reatritwteoete =yt
The czlculation leads to the Kiein- Nishéng formala

_ LA NS 2(1+x)_1
c—h(mcs) I—-‘f’ [71-1-2: Jr[c:g {1+2x):|

1 ' 14 3
AL A eprs zx)=}
x = % (25-32)

which Is in excellent agreement with experiment. At low frequencies this becomes

0= Bf(m%,)' a - 2x) (25-33)
and at high frequencies (x 23> 1) this reads
et \11

c=a (m—c,)  tog 2+ ) (25.39)

Thus the Compton ctoss section, too, drops off at high energies. At energies
above a few MeV, the dominant absorycive process is pasr producrion.

It is a remarkeble fact thac a photon at high enough energies, fw > 2mc?
can “materialize’” into an ¢electron and a positron (Fig. 25-2). The larter can be

 The fact that (23-31) locks Jike an off-dingonal version of the second-ordet encigy
shifr is, of course, po accident. ’
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Fig. 25-2. Torat absorption coefficient for lesd and 2lumioum as a function of
energy, in units of the electron rest energy (0.51 Me¥). The phoroelectric cross
section for Al is negligible on the scale depicted here.

propetly called an “aarieleciron”; it has the same mass as the elecoon and the
same spio, bur jts charge and magnecic moment have the same value with
oppesise sign as those for the electron, and the nonrelativistic coupling with the
electromagnetic field is obrained by the replacement of p by p — eA{r)/e.
Such a materialization can only oceur in the presence of a third pasticle,a nucleus,
for example, since energy sod momentum conservation cannot hold for the
process
y—e+ et

Ta see this withour going through a lang kinematical calculacion, consider the
inverse process ¢ + ¢+ — v in the center of mass frame. The electron and positicn
bave equal and opposie momenta, so that the final srate has cnergy
2(mtc* + p*c*)¥? and momentum 0. A photon of energy E must cacry momentum
Efc. If there is a nuclens present, ic can absorb momentum and energy (for a
massive nucleus this will be very small, p2/2M), so that it becomes possible to
balance energy and momentum.
The calculation of

» -+ nucleus — ¢ + ¢" 4+ nucleus

_ is beyond the scope of this book. The theory of quantum clecnodynamiés that
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is used in these calculations also shows that we can transfer particles from one
side of the equation to the other, provided we change the transferred partides o
their antiparticles. Thus one predices chat

nudeus 4+ ¢+ — nuclens + £ + 5

should also occur, with & matrix element very closely relaved to that of peir pro-
ducrion. This is in agteement with expéetiment, and the last process is responsible
for coumic ray shouers.

An incident ¥ ray of very high energy (it may come from the decay
n° — 2y, with the #° produced when a primery cosmic may proton hits a nuclens
at the top of the atmosphere) will make a pair, with each member canying
roughly half the original enetgy. Each member can produce a photon, as indi-
cated above,” and che end products can make further photons and pairs. Showers -
coming from extremely high enetgy events occurting ac the top of the atmos-
phere can cover arezs of several square miles! Less spectaculat showers in countets
are used to identify photons or electrons. An incideat particle that is charged,
but much heavier, will be deflecred less, and will therefore radiate less.

Detailed clculations show thar energy lost in material through these
processes follows the law

E(x) = B e %" (25-35)
where the “radiation [eagth” is given by

L (m2%3/h%) A
" 4Z%a*Nop log (183/Z14%)

{25-36)

whete Ny = 6.02 X 10% i3 Avogadro’s number, m is the electron mass, A is the
atomic weight, Z is the charge of che nuddeus, and p is the density of the material
in grams per cubic cencimeter. The “pait production length” is given by

L = %L (25-37)

The formulz is not good for vety low Z. Typical values of L are

Air 330 m
Al 2.7 cm
Pb 0.53 ¢m

Bremsyrahlung is ¢he dominant energy loss mechanism for electrons ar high
energies. At fow enctgics icnization dominares, Lack of space keeps us from
discussing this essendially classical effect.

" This process is celled Bremiprablung, and déan be undesstood chassically; 2 charge
deflected in the Coulomb feld of the nuclens is acceletared, and henoe radiaves.
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Problems

1. Calculste the cross section for the process
v + deuteron — N + P

‘The procedure is the same as that for the photoelectric effect. In the calculation
of the matrix clement, the final state wave funcrion is again

1
vV
where p is the proton momentum. At low energies the wavelength of the radia-
tion is much larger than the “size” of the deuteron, so that " = 1. To calculare

f Bre g

A /A

() =

observe thar

MpEs My
Vit - —ﬁ;V(f)\{‘i= 0
whete the reduced mass Mz/2 was used, Now use integration by parts to show

that

0= fd‘r g [V’lh -+ M;fn W — MP;{’.) !k']

= fd’f P (— g + M;f )\(ﬁ — %fﬂ”" Pl Vir)

leading o
(B~ Ea)fd’r PRy = -fﬂmf PRl (GY 2
Since the integral is only over the tange of the porential, which is very shiort, we

an teplace ¢ on the right side by 1. Another use of the Schridinger
equation leads to '

— f A e~ ) i = Ep f d% i)

with Eg the deuteron binding energy = —2.25 MeV, For the calcnlation of
this integral ake

e—u(r—ro)

N
¥ilr) = ﬁ

r>n

=0 r<n

properiy normalized. For what energies would you expect the photon wave-
_length o be much larger than the range of the portential o £ 1.2 fm? (The
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: )usuﬁcauon for ignoring the integral inside the ponenual tange (r < ro} fies in
thit re << 1/ where o = MpEBp/R%).
2. The principle of detaifed ha!ance relates the matrix elements for the
ltaCEIODS
A+ a—=B+ 4 I
and
B+ b—oA+ a4 II
thus
EIMII’ = E|Mll|2

whete the sum is over both initial and final spin states. Taking inte account that
in the calcnlation of a rate of cross section one averages over the initial spin
swates and sums over the final spin states, show that for the rtes

QL+ 0L+ K Qs+ DR+ 1) Ro
It (dpy/dEs) a2y Padp/AED) Q.

whete Jo, Ju, Jv, Jp ate the spins of the particles, py and p, are the center of mass
womente of particles # and 4 (I and I must take place at the same total energy),
Ey and E, are the corresponding enetpies of the particles, and 40y, 42, are the
solid angles in which & and « are observed. Use this result to express the cross
section for the mdiztive caprure process

N+P—D+4+ v

in terms of the cross section calculated in problem 1. Note that the facror
(27 + 1) for photons is 2 since there are only two polanmnon scates, and also
the spin of the deuteron is 1.

3. The crass section for the reaction
swr+D—-P4+F

has been measured fat incident =+ laboratory kinetic energy of 24 MeV, and
found to be equal to 3.0 X} 10-% cmn?,

(2) At whar laboratory energy would one be able 1o carry out a test of
denniled balance by measuting the crass seation for

P+Poa+D

(Thr: pion mass is myc® = 140 MeV; Mpe® = 940 MeV,; Mp &2 2M,).
{b} Given that the spin of the #* is 0, whar is the predlctcd crass section
for this macrion?

4. What is the raduation leng:h in liquid Xenon, for which Z = 354,
A =131, and p = 3.09 gm cm—%

5. Suppose the electron were bound to the nncleus by a square well po-
tential. Calculate the energy dependence of the cross section for the photoclectric
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effect. Assume that the photon energy is much larger than the binding energy of
the electron, sand that the potential bas a short range. (Him. See problem 1.)
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chapter 26

Elementary Particles
and Their Symmetries

In this chapter we discuss a number of topics telated to the fundamenta)
interactions of elemenrary particles. Although this chaptet is necessarily mare
qualitative than the others, because whavever theory exists involves concepts
too advanced to be discussed in a quantitative way, we will see that quantum
concepts are essential in the analysis of a veriety of complex phenomena.

A. Electrons and Positrons

In Chaprer 25 we meationed that in the presence of 2 second body (o
conserve momentum) & photon can matttialize into 20 electron and & positron,
The positron can  very appropriately be called the antiparticle cotresponding
to the electron; it is identical to i, except for the sign of the electric charge and
other electomagnetic properties {e.g., opposite magnetic dipole moment),
When an clectron-positron pair is produced in 2 bubble chamber, say, a very
characteristic patcern caused by the face that the two particles bend opposively
in & magnetic field is apparent (Fig. 26-1), Antiparricles are 2 necessary conse-
quence of relativistic quantum mechanics, and the positron was predicted in
1928 by Ditac, two years before Anderson discovered it experimentally.

We live in a world built of protons, neuttons, and electrons. Positrons are
rare, since they have to-be produced with the expenditute of energies of at least
2m.* (1 MeV) (cosresponding to the praduction of a pais at rest), and thus they
have been studied oaly uader special experimental circumstances. Nevertheless,
all experience and the fact that there exists a remarkably successful cheory of
quantiom eectrodyaniss symementic under £+« ¢ interchange indicate that elec.
womagnetic interactions do not distinguish, except For the sign of the eleceric
charge, between electtons and positrons. Tt is a bold exwrapolation from chis to

423
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Pig. 26-1. Bubble chamber picrare of the convession of -mays into electron-
positron pairs in the presence of matter (hydrogen). In one case the pair is produced
in the coulomb field of an electron, in the other case ir is produced in the coulomb
field of a proton. The wracks curve in the magnetic field of the bubble chamber,
with the faster pardicles bending less. (Courtesy of the Lawrence Berkeley Labora-
tory, University of California}.
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the genecak notion of the invariance of he laws of physics under particle-
antiparticle canjugation, in which not oaly eecttons are replaced by posirrons
(and vice versa) but protons by antiprotons, neutions by ancineuttons, and so
forth. With this generalization, we can coaceive of antimatter, consisting of anti-
nuclei, with positrons bound o them by attractive Coulomb forces. A conse-
quence of the invariance principle is thet all the physical observables are the
same, so that an observer could not tell whether he and his environment weze
made of mater or antimatter, Whether the laws of physics obey this conjectured
invariance law must be settled by experiment. It now appears that the laws of
the strong (nuclear) and electramagnetic intetactions do, bur that the laws of
the weak intetactions do not. The exisence of antiparticles follows from quite
general laws of relativistic quancum mechanics.

Let us concentrate on positrons for che time being and ask what happens
when they are produced in the vicinity of electrons. Sooner or later they will
collide with an electron, and in the inverse of the production process, they will
annihilate each othet, wich the liberation of the total energy consisting of the
kinetic energies and the sum of the rest masses 2m«? This energy will be
liberated in the form of radiation. To conserve energy and moementum, a third
bady (e.g., 2 nucleus) must be present, or at least two photass must be pro-
duced, as was pointed out earlier. A fascinating possibility is that the positron
loses energy by ionization, that is, long-range collisions with electrons, so that
slowing down rather than annihilation in flight occurs, The positron will
gencnally be caprured into #n orbit about an electron. The positron and electron
attrace each other and form an atom thar we call pasitromiue, The atom is de-
scribed, in fitst approximation, by che same equation as was used for the hydro-
gen atom, except that the reduced mass is u = m./2, so thet the ionization
energy is 6.8 €V, the "radius" is 1 & instend of 0.5 & and 50 on. Positronium
does exist and all of its properties are in accord with expectations.? The ground
state of positronium is an / = 0 state, and of che two possible states, 15; and 35,
the former lies lower. ‘This is what the hyperfine splitting (Chaprer 17) would
indicate, but the situation here is complicated by the fact thar the possibility of
annihilation teally makes this problem different from that of the hydrogen acom,
and che hyperfine interaction is partly cancelled by purely eelativistic effects.

Once posittonium is in an S-state, the wave functions of the ewo particles
overlap significantly, and annihilation becomes likely. The 15, state can decay
into two photons, and the wansition rate can be estimared as follows. For each
photon emitted, the matrix elemens will have an ¢ in it, so that the square of the
matrix element will involve ¢, of, equivalently, a?. The anaihilatian rate muse
also be proporional ro the probabiliry that the two pasticles overlap. A reason-

! This includes such esotcric effeces as the spin-orbit coupling, hyperfine sorecture,
e0d no effective imapinaty pare in it potential due ¢o the possibility of znnibilation into
Twa phorons.

.
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able measure of this is |¥(0)|?, where ¥{0) is the hydrogenlike wave function of
the ground state, evaluated at zeto separation berween the particles. The value of
this is {1/x)(1/a)?, where @q = %/ wa. To make the dimensions come out right,
we must multiply by a (length)? (time) ™! made up of &, ¢, and », but without
any factors of ¢. The estimate is thus

(GG

-(@)+(3)

‘The copstant 4 is not determined by this dimensional argument. The tae thus is
R=0263 X 100 sec (26-2)

Compatison with the experimental rate of 0.8 X 10" sec? shows that the
constant # is approximately 3.0. A proper evaluaton of this constanc really
tequires telativistic quantum mechanics, since we requiee the matrix element
for the annihilation of a particle and an antiparticle, and this concept does not
entet into the nonrelativistic Schridinger equation.

Posittonium in the 35; state can also anaibilate, but must do so with the
emission of three photons. To understand this, we must consider the peoperties
of positroninm unde charge conjugation, that is, under the interchange e* «+e~,
We observe (cf. Fig. 26-2) that charge conjugation can be accomplished by (1) an
inversion, accompanied by (2) & spin exchange. A singler state, with § = 0, is
odd, and a giplet state with § = 1 is even under the latter exchange, so thac the
effect of spin exchange is (—1)%*%. The effect of space reflection is usually
{—1), that is, even angular momentum states are even under veflection, and so
on, bur there is an additiona! factor of (—1) that arises from the fact that anu-
particles of spin 1/2 (also 3/2, 5/2, . . .) have parity opposite to that of patticles.*
This implies chat we can write for the effect of charge conjugation

C= (-1} (26-3)

Thus the ground state 'Sy is even uader charge conjupation, and the state juse
above it, %5, is odd. Similarly, Py is odd under charge conjugation, while
3P, 1.0 is even, and 5o forth. Now the electromagneic field is odd under conjugi-
ton. For example, the equation

Vv-E =4z : (26-4)

2 This follows frem quite penenl properties of relativistc quantum mechanics,
and has experimental consequences nside from the one mentioned above. For example,
the polarization vectars of the two photons produced in positronium annihikdon are pre-
" dicted to be preferentially perpendicular to each other. This is borne out by experiment.
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Fig. 26-2. Equivalence of charge conjugation and {inversion) »{ (spin exchaage)
for electron-positron system.

can only be invatiant under charge conjugation if E changes sign when the
chatge density does. In: effect, under charge conjugation,® e — — e. This leads to
a series of selection rules, which state that positronium in a state with a given
S and ! can only decay into an even number of photons if § 4 /is even, and into
an odd number of photons if ¥+ /is odd. Thus che 25 state can only decay into
an odd number of photons. Since each additional photon reduces the mte of
decay by a factor of o, at least, the smallest allowed number of phorons is
favored.

B. Baryons, Antibaryons, and Mesons

In the lasc section we extrapolated the nmotion of charge conjugation to
perticles other than electrons and on that basis made a conjecture abour the
exiscence of antiptotons and entineutrons. These particles have actually been
found to exist, aithough ic is difficult to make them, since it takes & center of
mass energy of at least 2M¢* 2= 1880 MeV to make a pairat rest. The antiproton
has been found to have charge —1, mass equal to that of the proton, magnetic
momeat equal and opposite to that of the procon, and other properties expecred
from theory. Since the ncutron is neutral, one might ask what distinguishes the
antineutron from the neatron. The answer is that there appears to exist 2

3 Undex charge coajugation p — (6/¢) A—p + (/) A. We do noc change the sign of
the mumber ¢/c but instead change the sigo of A, or, equivalentdy, E and B, when we cany out
charge conjugation. This means that the polatzation vector ¢ is mansformed into its negative.
Since transition rates iovolve the squares of quantities involving =, we see thar these ob-
servable guanticies are invariant under the transformation.
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quancum number like charge, called Baryos Number, Np, which is conserved, and
which has value +1 (by definition) for nuclecns {neutrons and protons) and —1
for antinucleons.

The notion of 2 conserved be.tyon numbet arises from the empirical obser-
vation that the reaction in which ¢~ and P annihilate does not seem to ocom. If
the reaction

e + P— “stuff™
of, equivalently,
Pt 4 smff”

could occur, then matter would not be srable. We can trivially set a limic on the
lifetime of the proton; the existence of very old rocks shows that it is longer than
45 X 10° years. Actually one can do better. Either of the above reactions
occurring in a scintillaror would give tise to radiation that could be decected.
By propedy shielding a large scintillator to eliminate pulses caused by exrernal
sources such as cosmic mys, and looking for “spotianepus’ pufses, one can
sec a limit on how often the above reactions mke place in, say 10* atoms.
The absence of such spontancous pulses over a cermin period of obsetva-
tion has been cranslated into a lower limic on the proton lifetime equal o 2 X 10%
years! It is fair to say that the proron is stable. .
Actually dhe reaction

r+P-—).N+:»'

does occur in auclei, so chat it is not quite right o say chat the number of protons
is conserved. The cotect statement here is that the number of protons plus the
number of neuwons is conserved, just like charge. This numbes is what we call
the Baryon Numbet. We posoulate that under charge conjugation this quantum
number, just like charge, chznges sign. Thus the antiproton and the antineutron
have Ng = —1, Electrons and posiuons have Np = 0, and this is the formal
explanacion for the absence of the reactions ¢ + P — “suaff,” and so on.
Baryons and aatibaryons e annihilate into “stuff'” that must have Np = 0, but
may have charge 1, 0, —1 in the processes P+ N, P + P (ot N + N), and
P 4+ N. Whatever the annibilation ptoducts are, they must have a voral energy
of at least 1880 MeV and chis is 2 very distincrive feature of nudeon-antinucleon
angihilation.
Although it is consistent with the symmetty laws to expect

P+ P— (¢te- pairs) + photons

to accur, it turns out that most of the time the anaihilation ptoducts ace «-masons
also called pions. These are particles first predicied by Yukawa in 1933 to exphin
. the shor-range nuclear forces in a manner analogous co the long-range elecwro-
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magneeic foroes. The pions were viewed as counterparts of photons.? Pions are
not part of pur everyday experience, since they have shoet lifetimes, 107 sec for
the 2+ and 10~ sec for the 7% They all have rest mass of the nrder m,? o=
140 MeV and Np = 0. The »~ is the antiparricle of the x+; their masses and decay
patterns are the same, Pions are responsible for ac least parr of the nuclear
forces, and as such must be rather strongly coupled to nucleons. Thus the enelog
of &/fc (2£1/137) is a number g?/#r 2= 15. Hence the rule chat cthe smallest
siumber of photens in 2 teaction is most probable does not hold for pions. In
the angihilation
P + P — pions

the number can vary quite 2 lot, consistent with the constraint provided by
energy consetvation, The average pumber appears to be around 5, when the
nucleon and antipucleon are at resc. Pions have been found to have spin 0 and
negative patity, and thus ate catled prexdarralar patticles. Since they are spinkess,
they cennot have any electrical momencs, for example, magnetic dipole moment.
Thus the only difference between a x* and a o~ is its charge, and the x° is its
own antiparticle, like the photon.

C. Isotopic Spin Conservation

The neutton and the proton ate tealy very much alike. They differ in (a)
their charge, (b) their magnetic moments, 2nd (c) their masses, the last to about
one part in a thousand, ‘The nuclear forces, on the other hand, do not appear to
distinguish between neutrons and protons. Thus the binding energies of mirror
nuclei, that is, auclei that teansform into sach orher when neutrons ate replaced
by protons and vice versa, ate almost equal, with the discrepanty exphinable in
verms of dhe difference in the Coulomb eaergies. If the aeatron-proton mass
difference also were an ckecttomagnetic effece {and its size & consistent with this
possibility), then one could blame all the differences between neutrons and
protons on elecccomagnecism,

Heisenbesg and Condon made the bold proposal that the natuee of the
nucleans must be such that if ic wete possible to “turn off” their coupling to the
elecrromagnetic field, that is, the electric charges, then there would be no way of
distinguishing between proton and neuwron, and thar these two particles should
really be viewed as two substates of a singke entity, the nucleon. This notion
grew oue of the realization that an electron with spin “up” and an electron with
spin “down" in 2 magnetic field are still the same electron, even though the
energy is different. In this case the magnetic field can be tumed off, and the
"“symmewy breaking be made to disappear. Por nuclecns, the symmety-

4 See Special Topics section 5 on “The Yukawa Theory.”
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breaking electromagaetic interaction cannot really be tumed off experimencally,
bur this is no barrier to imagining a world without electromagnetism. The pro-
posal was thae the analogy with spin should be quire exact, that is, thac fhe
protar and the nestron hould be “up’ and “down” states of an “isorpic” spin 112
entity called the sweleon. The nucleen is an I = 1/2 sute and the praton and
neutron ate eigenstates of I, with eigenvalue +1/2 and —1/2, respecively.
The eatiproton and the antigectron also form a doubler, but now it is the
antiproton that has I, = —1/2, and the antineucron I, = +1/2, Nuclear forces
are now “‘auclecn-gucleon forces,” and the equality of P-P, N-P, and N-N
forces can radily be understood if one assumes chat the nucleon-nucleon
potential conserves the total angnlar momentum in isotopic spin space, that s,
that isosofiic spin is conserved.

Two aucleons, each having I = 1/2 can form an I = 1 wiplet and an
1 = 0 singlet. The states, in complete analogy to the spin triplet and singlet,
have the form

PP
triplet % (PN -+ NP) singlet % (PN — NP) (26-5)

NN

The noration P and N here is the isotopic spin analog of spin “up” and spin
“down” spinors xq, x—

By the Pauli Exclusion Principle, the P-P states arc limited to torally
antispmunerric states 'Sy, *Pe 0, 1Dy, . . . . F-spin conservation demands that the
N-F system in the [ = 1 smre also obeys che same symmertry. Thus che P-P
and N-P forces in these states will be equal {and equal to the N-N force), bux
the forces in the 3§, Py, 2Days,, . . . staetes of the N—P system can be different,
since these comespond to [ = 0. That the forces are different is shown by the
fact a denteron without a comesponding P-P and N-N bound state exists. This
situation is analogous to the existence of spin-dependent potencials chat give &
different force for the miplet and singlet spin states, even though the total
sngular momentum is conserved. If we introduce operators I (= 1,1, 1,) obeying
the “angular momentum" commuration relations

(L) =il (eyel) (26-6)

we (an consttuct the whole isotopic angular momentum formalism in exacr
analogy with the otdipary angular momenrum formalism, except that there is no
apalog of othital angular momcatum connccted with motion in space. J-spin
conservation implies thet in the absence of electromagnetic interactions, the
Hamiltonian has the property that

-0 @s7)
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Futthermore, cigenstates of 1* and 1,, with eigenvalues (I + 1) and —1 <
I, < I can be used as basis states. The existence of three pions, »*, x°, and 7,
all with spin 0 2nd parity —1 and alf of almost the same mass, fits in very well
with the existence of the symmetrty; we can say that piens form an I = 1 sripia,
with the I, = 1, 0, —1 states represented by xt, x°, and x—.

The mere existence of these i-spin mulriplets may be viewed as evidence
for the underlying symmeuy. We can, however, point to several other more
ditece manifestations of the symmetry of the strong inferacefons that are seen in
the nuclear forces.

(e} MNuclei consisting of Z protons and A-Z neutrons will have

Z—(Ad~2Z
L-2-4-2
2
=Z— A2 (26-8)

so that any one of irs states belongs vo a multiplet of total I at least as lacge
as |Z — A/2|. One might hope to find evidence for other members of these
multiplets in neighboring auclei, and such evidence has indeed been found.
The /-spin partners of a given set of levels are called analog states and have been
the object of intensive study by nuclear physicists, Figure 26-3 shows a par-
ticulatly clean ¢xample of multiplets. %0, **F, and *Ne have proton/neuccon
numbers (8,10), (9.9), and (10,8), respectively, For the fitsc and thitd, the ground
staces could belong ta the same 7-spin triplet; the spectrum shows that 2%F has a
ground stace that hes spin-parity 1%, so that it cannot belong with the 0+ ground
states of ¥Ne and 150, bur that there is 2n excited OF state that could be the
I = 0 member of the triplet. Furthesmore, chere is a remarkable cottespondence
between a whole sequence of enetgy levels in che three nuclei, indicating that
they are all pars of an I = 1 multiplet. The figure shows that they are nar
degenerate in mass, but that they differ by several MeV. This is to be expected
because the Coulomb repulsion berween the protons does not respect i-spin
symmetry. The energy differences can be accounted for quantitatively in chis way,

{b} I-spin mulsiplets also appear in excired states of nucleons. If one ex-
amines pions and sucleons emetging from a high-energy collision of 2 pion or
proton with a target proton, one can determine their momentz and energies.
If a particalar nudecn 2nd pion wete to be decay products of a single enticy,
then that entity would have to have T = 3/2 ar 1/2, since the addition of
1= 1/2and I = 1 ran only Jead to such states.® Fumthermote, if the decaying
state were at rest and of mass M, then the pion and nucleon would have equal
2nd oppesive momenta, and the sum of their energies would equal Mc®. More
generally, if (Ep) denote the nucleon energy and momentum and (eq) denote

&Ir is, of course, assumed that J-apin is conserved in such & “decay” of the excired
stare. Mose about this larer!
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Fig. 26-3. The level schemes for ouclei with 4 = 18 The Y = 1 levels for 0
(I. = —1), ¥F (I, = 0), and ¥Ne (I, = 1) show a rematkable correspondence.
The I = 0 levels for 5F are also skecched in. (Datz raken from F. Ajzrenberg-Selove,
Nauclear Physics A190, 1 (1972).}

the pion energy and momentum, then relativity tells us that the more genetal
relation is
B+ = (p + @y = At (269)

Thus by measuwring energies 2nd momenta, and studying such combinations of
energies and momenta for pion-nucleon pairs, it is possible to lock for such
decaying states. Figure 26-4 shows some examples of such mass spectra. One of
the most common states found is an I = 3/2 state with M = 1236 MeV.
QOne knows that it is I = 3/2, since the mass peak oocurs in the Pat system,
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which has I, = 3/2, It has, of course, been checked thas the peak occurs in the

other I, states, The multiplet is usnally denoted by A(1236). It is = pasticle, in the

sense that a detailed study of the angular correlations between the pion and the

nucleon indicate that the spin and parity ate 3/2%, The mass distribution bas Y
width of about 120 MeV. This is the “narural line width,” and it indicares that

the lifetime of the T = 3/2 stage is

B 10-% -
AME T 120 X L6 X 105

T

0.5 X} 1072 sec (26-10)

No wondet the A cannot be detected as a particle leaving a track in a bubble
chamber!

240

Number of svents
-
o
1=}

8

03 0.5 0.7 0.9 L1 13 15
Mrtw (Gev/c?)
fa)
Fig, 26-4. Bvidence for resonances. () Plot of M, %~ = (#* + pu)for xtam
pairs from teaction =~ + P — x*x~N. {#) Plot of events {x*P) as a function of
M."p, Since the initial stare involved x*P and only two particle final states were
studied, this is equivalent to a measurement of the +*P cross section, The ++P state
isa pure I = 3/2, I, = 3/2 state, .
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Fig. 26,4 conrinued

The copservation of #spin allows us to make predictions about the
relative decay rates of

/" P“To
h\‘ Nx+
The procedure is completely analogous to our discussion of spin and intensiry

rules at the end of Chapter 22 The initial stare of T = 3/2and I, = 1/2 may be
written in terms of I = 1and [ = 1/2 wave functions, as lallows

A

Yo s = )3 P+ ﬁ a N (26-11}
V3 V3
whete Yginaz tepresents the A+, Thus the probability of findinga Pr” state is 2/3
and that of finding a Nt state is 1/3. These predictions are borne out by an
analysis of the dara.

I-spin conservation has been tested in many reactions, anl there is no ques-
tion as o fts correctness, subject o small electromagnetic corrections. The fact
that these carrections are so small, for example, that the neutron-proton mass
difference is so small, made it possible to identify the symmetry. When sym-
metry breaking is lacge, this becomes much maore difficule.



Fig. 25-5. The reaction K+ + P— i+ + K+ A% 4 xt 4 x%seenina hydrogen
bubble chamber. The strong reaction conserves steangeness. The picrure shows a large
oumber of inceresting secondary feactions: the =+ scatters off a proton and subse-
quendy decays according ca #~ — p+ + 7, with the at decaying pt — o+ 5 B,
the x° decays #°® — v + 5%, with n et e and v, 2 et + oo, the &* under.
going Bremsstrahlung ¢+ — e+ + 5, the 4° decays according ta A° — P 4 5o
the K* undergoes the decay K® — =+ + o, {Courtesy of Lawrence Berkeley Labo-

ratory, University of California ) .
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D. Strangeness

In the late 1940 it appeared as if the basic ingredients of 2 theory of the
strong inseraciions, thase eesponsible for the nuclear forces, were established. The
forces acted berween the nucleon doublets, and the “glue” giving cise to these
forces was the pion triplet, as predicted by Yukswa. There remained the in-
superable technical problem of making reliable calculations (because the potential
is strong, perturbation theory cannot be used), but the expectation was that this
prablem would, sooner or later, be solved. It was therefore very exciting when
around 1950 cosmic ray experiments, and later, the fiest high-energy accelerators,
indicared the existence of a pew set of particles. The firsc particle so discovered
wis the A”: it was found that when a cloud chamber was exposed to cosmic rays,
a certain oumber of V-shaped twacks were seen. When the experiment was
sepeated in a strong magnetic field, it was found that the tracks bent in opposite
directions; the curvature of the tracks in the magnetic field devermined theit
momenta, and the range derermined their energies. From this, the applicarion of
(26-9) allowed the determination of the mass of the particle that decayed into
the P and 7 it was given by M.® = 11135 MgV, The apex of the V, marking
the point of decay, appeated a certain distance from the peint where the produc-
tion interaction occurred. From this the lifetime of the A could be determined,
and was found to be 2.5 X 107 sec. From the number of A’s seen in a given
number of photographs it was detezmined that they wete produced with a cross
section of the order of 10~ ¢cm2. 1n addition to the decay mode (see Fig. 26-3).

A P41
the decay mode
AN+

was later established, Another pair of patticles were also found; these wete the
sigmas, I*, with My = 1190 MeV, lifetimes st = 0.8 X 107 sec, vy =
1.5 X 10719 sec, and dominant decay modes

. P o
E+/A +
‘“\_\‘_’N—Fﬂ_‘_

———= N+

Ar about the same time other ttacks appeared that were finally interpreted as
caused by aew particles with Ng = 0. Their decay modes were (see, for example,
Fig. 26-5).
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In spite of the different final states, these were arrributed to single particles
because in each case the masses came out myet = 494 MeV and the lifetimes also
clustered around the valees 72 = 1.2 X 10-% sec and 7g® = 0.8 X 10710 sec.
These K mesons were also produced with cross sections of the oder of 10 cm?.

_ The discovery of these parricles and theit propetties caused a crisis; the
dae, taken at face value, were not compatible and if taken seriously implied that
quantum mechanics could not describe the behavior of these patticles, To see
this, let us describe the mattix element for the decay A® — Pr— by the number
G. According to the Golden Rule, the decay rate is given by

ar & dp/dE _ Im g dp/dE

B (=B R (2mi)?

With relacivistic kinematics (p is the center of mass momentum }
E = [(MpeD)? + p2e72 + [(mac?) + pre)ire

4p/dE evaluated at E = M,® can be calculared, and we get, writing G? in
dimensionless form as

E= {26-12)

Gt=§

(26-13)

M

. "
P (_’”_) (i’f_) (i) By (26-14)
w \h i) Nt f N\ Moot
The dimensionless oumber 8 is che inalog of the fine stucture constant w.

Putting in numbers we get for the decay rate

R 2£0.68X 10% sect {26-15)

the rate
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from which we find that 8 2 0.7 X 10~'%. This number is very much smajlex
than the fine structure constant and suggests thar the interaction respousible for
the decay is much weaker than the electromagnetic interaction. On the other
hand, if the A° is produced in 2 conjectured reaction such as

=+ P=A"
one can use the A°Pr~ coupling to estimatc the cross section. Estimates of the
type we used in our discussion of the photoelectric effect suggest that the cross
section must be proportional to 8. The largest “area” involving the masses of
the particles involved thus gives, with the above 8

ﬂ 1
v~ xB (m C) =45 X 107¥ cm? {26-16)

This differs from the experimental value by a factor of 10" and no mioor changes
in the estimates can save us. It thus appears that che A° is produced by a strong
interaction and decays through 2 weak interaction.

The way out of the dilemma was suggested by Pais, who proposed that
the production process necessatily involves another one of the new particles, so
that reactions involving peirs of the new particles could proceed strongly,
wheteas teactions involving only one of them woutd have to go slowly. Thus
the conjectured reaction

m+ PoA+
should not take place, but that
#+ P-4 4 K
for example, could. The suggestion of Aweciased Producion turned out 1o be
cottect, and it was soon determined that the production of a A® was aiways
accompanied by the production of a X, The limitations of the Pais proposal were
seen when still another particle, named the Cascade (57), was discoveted. Pre-
liminary evidence showed it to decay, with a lifetime of 1.7 X 10~ sec, zccord-
Ing o
E— A"+
but it #id not decey according to the mede
F—+N+»
Its mass was found 10 be Mze® = 1321 MeV, If the £ “"helonged with™ the A°,
then the fitst decay mode has a pair of the “aew" particles, and should go
rapidly; if the £~ is “normal” then the decay
E—=aN+x

- should go rapidly, instead of not at all,
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1316 MeV —"_:._:_— ---3-""
1190 MeV -
E- 0 z*
430 Mav pr =
H-
1115 Me¥Y o
240 MWaV T — — 140 MeV -
L4 [4 ™ 7 a
Baryons Mesons

Fig. 26-6. Hadron spectrum s known in 1933 hefore the discovery of other
particles predicred by stangeness theory. The energies are only approximate, and
the new particles predicted by the sttangeness theory are given by the dotted levels.

Order was brought into the jumbled situation by Gell-Mann and by
Nishijima, who independently proposed the extension of the notion of #-spia to
the new particles, and introduced a new quantum number, the strarigemess S. The
spectrum of baryons (the name for nucleons and the new particles that ultimacely
end up a5 nucleons) and mesons was, by 1953, believed to have the form shown
in Fig. 26-6. Itis cleac that the 2% — A° mass difference is too large to put them
into aq J-spin tripler. Thus, in the absence of ¢qual mass partnets, the A® had to
be an I = 0 state. Since the production crass section in the teacrion

T+ P+ K

was lacge enough to be viewed as & strong (tather thas elecromagnetic) process,
#-spin should be conserved. The left side has I = 3/2 or 1/2, and thus the &°
must belong to one of these multiplets. The absence of eny observed K+ or
K—, needed w make up 2 quarcet, showed that the K° would have to be part of
an I = 1/2 doublet, with I, = —1/2 equal to the I, of the Px— system. The K+
was undoubtedly the I, = +1/2 partner of the K° The lifetimes of these twg
particles could be very different, since the weak interactions need not conserve
f-spin any more than the electromagnetic ones do. The K- _is undoubtedly the
antipatticle of the K+, and its I, = 1/2 partoer is denoted by K®. Note that the K°
cannot be identical with the K® since they have different values of I, How is it
possible for a neutral system not to go into itself under charge conjugation?
We saw that the antineutron differed from the neutron, because they differed in
the value of baryon number Ny, What % the quantum aumber that distin guishes
between the X® and the K7 . :
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To answer this question, let us consider the relation between I, and the
electrical charge. For the nucleon system we have

1
= I‘ —
Q +3
and for pions
Q=L
These two cases, and that of the antinucleon, can be combined in
N5
= I‘ = —
Q + 3

This formula, howevet, does not work for the new parricles. If we modify the
formula by the inreduction of a new quantum number § called the steangeness,
5o that

)
Q=L+ % + S (26.17)

we find that for nuclcons and pions 5 = 0, but for the A® we must have § = —1.
Thus the K° and its partner, the K, must have § = +1, and hence the K~ and
the K must have § = — 1, if we assume that charge conjugation alsc changes the
sign of 8, as suggested by (26-17). This is the reason chat che X° and the K° are
different. How this manifests itself we will see later.

Continuing with our examination of the baryon specttum, we see that in
the absence of T+ and/or Z—, it seemis natural to assign I = 1 to the Z's.
This howevet predicss the existence of 2 Z°% of mass dose to 1190 MeV. Why
was the decay

2P+

(analogous to the A® decay) never seen? Gell-Mann pointed cut chat the electro-
magnetic decay

Aty

did not involve 2 change in strangeness, in conast to the former decay mode,
With the postulate thar a decay in which sttangeness changed by one unit,

|asl =1 {26-18)

should go “weakly” with rypical lifetime of the order of 10~1% sec, while strange-
ness consetving reactions should go strongly, or elecrromagnetically, it was
possible to predicr that the 2° — A® + 4 decay should be vety rapid (r ~ 107%
sec), leaving no oppottunity for the weak decay to take place. A careful study of
A" decays showed that they frequently ofiginaced in a reaction in which some
momentum and energy was missing, An examinacion of the missing momentum
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end energy showed chat the mass of the missing particle was consistent with 0,
and that the photon and A® were decay products of something with mass 1192
MeV, confirming the existence of che Z° How do these nations, that is, con-
servation of 5 in the strong and electromagnetic interactions, and [AS] = 1in
the weak ones, work for the 57 The weak decay

E—A 4

suggescs that the smangeness of the T~ must be 0 or — 2. The former assignment
is incompatible with the absence of

E—a N+

and hence we must take $ = —2. This implies that the £~ has I, = —1/2, and
in the absence of multiply chatged 5's we assign 1o it I = 1/2. This predicts a
pattaer, the E°, which should have mass around 1320 MeV and decay according
0

= A+

(the decays Z — £ + 7 ate not possible because of the masses of the particles
involved). The Z° was looked for and found! The explanation far the absence of

E—-N+r

lies in chac it is characcerized by {AS| = 2, which is presumably doubly wezk,
characterized pethaps by a 8 of magpitude 1029,

‘The notion of strangeness conservation in the suong and electromagnetic
interactions, and |AS| = 1 in the weak ones, has passed every test. The classi-
ficacion of partcles by #-spin and strangeness, or equivalenty by hypercharge Y
defined by

Y=MNzg+ 5 {26-19)
is given in the following table.
Baryons Mesons Antibaryons
Y T Ng=1 z =D Ny = —1
1 —
1 3 PN K+, E? -2
0 1 'z, ¥e, =- T o, - %0 o
.0 0 Al ? A
-1 - =, ) Ky K- NP
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Subsequent determination of the spins and patitics of these parvicles
showed that all the particles in the frst column were 1/7% and those in the
second column were 0~. If we are looking for patterns, whete is the missing
I'=0, Y = 0 pseudoscalar meson?

E. Unitary Symmetry
The search for a familial relation among the beryons and among the

mesons was actively pursued in the late 1930s, Finally in 1961 Gell-Mann, and
independently Ne'eman, discovered a genenalization of fspin, bearing the

YA
1 x x * x |
Y 1
i 8 10
1= *® % o x x x .
I
!
o x M x =1 ® x
-1 x * -2+ » |
] ] i | ] - I S T N O S |
1 -2 © 2 1 i =32 -1 -1/22 0 172 1 3z ";I
¥a
2k x x x 27
| X b w0 b
0 x KK X ¥ *
-1 x £+ = x
-2 x ® ®
) T T S N |
—2-3/2 1 —12 O /2 1 32 2 1,
Pig. 26.7. Some 3U(3) representations. The number of crosses at each site repre-
sents the multiplicity. Thus the 2T consists of a ¥ = 2, I = Ostave, ¥ = 1,1 = 3/2
and 1/2 states, ¥ = 0,1 = 2, 1, O stares, and 5o on,
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technical nzame of SU(3). Since group theory, the tool most widely used in the
search, is beyond the scope of this book, we can only give 2 very qualitative
idea of how the familial relacion looks. In SU(3), states come in supermultiplets,
Each supetmultipler will consist of a numbert of states that can be labeled by
i-spin as well as hypercharge. Figuee 26.7 shows the several supermultiplets,
the octet, B, the decupler, 10, 2nd the 27. Figures 26-8 and 26-9 show how the
1/2* baryons and the 0~ mesons fit into the octer patrern, The missing I = o,
Y = 0 pseudoscalar meson was found in the examination of +r—»° masses in
bubble-chamber pictures, A study of

(') = (Bt + Eo + E ) — &{ps. + p_ + po?

showed a strong peaking at my* = 550 MeV, and an analysis of the diswibution
of the energies and momenta among the three partidles showed that the decay
pattetn implied the quancum numbers 0~ for that particle. The absence of similar
correlations in a*r*z~, say, showed that the i-spin had 1o be zerc. Since the
decay was clearly not week, the strangeness had to be zero,

IE che SU(3) spmmetry was indeed a badly broken (badly, compated 1o the
only slightly broken /-spin symmetty) symmenry, then ic should also be relevant
to the excited states of the nudeon. The I = 3/2, ¥ = 1 A{1236) resonances
needed partaers. In 1960 a set of A%x resonances were discovered. The i-spin was
clearly 1 and the hypercharge was 0, and dewiled tests showed that the 3pin and
pacity were 3/27, so that these so-called Z*(1385) were most likely pattners of the
4(1236) in a supermultiplet. The simplest possible assignments were the 10 and
the 27. Gell-Mann and others conjecrured that the 10 was the appropriate choice.
The discovery in 1962 of a Ea resonance of mass 15351 MeV, with T = 1/2

¥
1= A :
. *\
\\ AN
Ay \\
\\ LY
by
ol 'ty AC, z9 \{:*
N A
N, \ \
N ™ \Npg-
@ =-1 2=0 =1
\ hY
1= \IE'.”' \..,.o
| | | L Lo,
—1 —1/2 o 172 1

Fig. 26-8. Octer pattern for spin 1,2+ baryons. ‘The diagonal linss are lines of
constant charge O .
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-
2 &° o
11— ™ -
o :r- Peanl 2
K- o
1 ] -
] ] ] ] ] '
-1 12 0 172 1 *

Fig. 26-9. Octet pattern for mesons. Included is the T = 0, ¥ = 0 particle
#° discovered in 1961,

{no Z-x— resonance, for example) sttongly supported this zssignment. What was
still missing was che last member of the decuplet, an [ = 0, Y = —2 negarively
charged particle. What would it Jook like? Here the patrern of masses of the
other members of the decupler, A(1236), £*(1385), and E*(1531) soggested
equal spacing increasing lineary with | Y. If this were to be maintained, the
missing particle, called the ©-, would have to have mass in the vicinity of Mqc®
= 1675 MeV, This would give the §I~ a unique signature; its mass is too low
to decay strongly into = -+ K, and hence ic must undergo a |AS| = I decay to
A°K or Zr. Its production would also have & special signature, since the lowest
possible Y.value for an titial state is ¥ = 0 for K~ + P collisions. Thus, to
makea Y = —2 -, two K's would have to be produced.

A massive search for such a partide was undercaken, and in 1964 the
first ¢ picture was published (Fig. 26-10). The production process was

K4+ P-4 +K-+K°
and the decay
O — e+ 5

L——IAD"]'WO

Y+ 7

—» P+ 7



Elementary Particles 445
The fact that in the x° decay
oyt

both y-rays produced paits was very fortuitous and makes the picture a textbook
ezample of what theoreticians dream of, but experimentalists seldom see. The
mass of the I~ was found 1o lie remarkably close to the predicted value, at
1672 MeV. The spin and parity have nat yet been measured, since to date thete
exist only 28 @~ pictutes, but there is no doubt in anybody's mind of what the
outcome will be,

The SU(3) symmetry, just like i-spin consetvation, makes predictions
abour decay rames among particles in the same sopermultiplec. Thus there are
predictions relating A** — P 4 xt, TH* — A° + 3t and 5°* — E- 4 5+
that are in good agreement with cxperiment, given the fact thac the symmety is
broken. The genctally accepted view is that SU(3) is indeed an undedyin g Sym-
metry of the strong interactions, The mechanism by which it is broken is not
yet well understood, although some pattems (such as the equal spacing rule in

Fig. 26.10. 'The first . The mass of the 2~ is below the & + E mass, 5o that
a strangeness-violating (weak) decay is involved. What is scen in the bubble-chamber
picture is the sequence - — B® 4 573 B9 —» A®° + x%(— 24); A° — P + ¢+ [From
Batnes ef al, Phyr. Rey, Letrers, 12, 204 (W64), courtesy of Brookhaven National
Lehoratory and Dr. N. P, Samios.]
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the decuplet) follow from some simple postulates gbour the nature of the
symmeuy breaking. All of the many resonances that have been found can be firred
into supermultiplets, although frequently there are still undiscovered parrners.
It is a rematkable facr chac all of the mesonic resonances (and chere are now
17, 17, 2+ and (probably) 0t octrets) and all of the baryonic resonances fit into
octets for mesons, and octers or decuplets for baryons. This absence of higher
superrultiplets, for example, the 27, cannot be understood on the basis of
SU(3) alone. It does follow from = simple composite model of elementaty
patticles, called the guark model first proposed by Gell-Mann and by Zweig,

F. The Quark Model

The question of which parricles ate elementary has been a pressing question
in this fundamental field, and with the recognition that the elementary™ proton
and neutroa had six partners, it became clear that #f chere were some elementary
building blocks, there would most probably be fewer than eight. What might
these building blocks be like? We have spin 1/2 particles a5 well as spin G, 1,
3/3, . . . parcticles. These can be made out of spin 1/2 building blocks, but not
out of spin 0 building blocks; similarly we need an i.spin doublet, at least, ta
make up 7/-spin 0, 1/2, 1, and 3/2 states. In addition, we need at least one more
particle diffecing in hyperchatge from the doublet, so that vatious Y states can
be construcred. SU(3) happens ro have, as its simplest aoncrivial states, a three-
particle representation and its antiparticle representation. These representations
named “quarks” can be used to build up other SU(3) representacions, jusc like
angular momentum 1/2 can be used to build up angular momentum states of [
different from 1/2. The rules turn out t¢ be

33— 841
3@3— 6+3
32303=104+84+8+1
so that it is plausible to assume that mesons are made of “quarks”™ and “anti-
quarks,” and baryons and their excited seates are made our of three quarks cach,

In this way the absence of higher representations can be understood. In order
o maintin the formula
Q=1L+

the following quantum oumbers are assigned to the quarks, which are l;abelcd
with lowercase Jecters eelaved to their /-spin content, p, #, and L.
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Particle Nz T i Y [4]
? 3 i 3 3 i
” 3 3 - ¥ -3
A $ 0 0 -2 -3
X -% 0 0 3 H
» -1 3 i | H
? —% ¥ -1 - -3

To construct the composite wave functions for a quark-anciquark system, we
statt with the highest Y and highest ¥, states; lowering I, can be done by succes-
sively converting p — # or n — p. To get the states of ope Jower unit of Y,
convett 4 p to a h ot an = ta a h. For example,

K+ = (N

Hence
K® = (uh)

To get the + state, canvert A — 7 in the K+. This yields
xt = (pn)

and then, successively®

= '% (—p} -+ r!;)

= (1)
The K- and K? are juse the antiparticles of the K doublet, 5o that
K = Q)
K== ()

There zemains the I = 0, Y = 0, 4° state. It can be cbtained by converting
£ A the K*. What one gers is part ° and part x°, but since we already know
what part 7° is, the 3° can be found by insisting that it be orthogonal 1o the »°.
The choice tntns out ta be

1 - — -
q.}=~v—,g(2n—pp—m}

_  1'The minus sign in the =" is 2 technical subtlety. In effect, the antispinor 10 (p, #) is

{r, — ). -
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There remains a final possibility:
1 - - =
XD=-{/—§(PP+£N+)}\J

arthogonat ta both #°and #°. This is, in fact, the 1 in the decomposition 3 X 3 =
8 + 1, and it does correspond ro a pacricle thar has been identified, the #/(959),
which alsa has spin and parity 0.

The bound states with L = 0, that is, the '§, states, ete the pseudoscalar
mesons (tecall that the parity of an antipatticle has an additional minus sign).
One can imagine L = | states, for example, Py (Le., 17) bound states, and zlso
#Py 1 g states (21, 1%, 01), and so on. Many of these have been found, The quark
model, being more specific than SU(3) yields more predictions, comelating
decays of particles that have different spins.

The three.quark wave functions can be wotked out just like the quark-
antiquark wave functions. The highest ¥, I, statz is the (ppp) state, which can be
identified with the AT, Its pattners are again obtained by successive conversion
of p— m

At = (ppp)

1
At = W (PPN + np + ﬂPP)
A% = %(}m + npr + nap)

A= = (pun)

The Z** is obrained from {ppp) by changing p vo A, Thus
1
T = — (pph + Py
3 N T e
I* = —lv_-g(pna-rmﬂxwr mNp + Apn + np)

TE = % (rex 4 nhe + hnw)

V3

Successively
L
T o= - {EAA A Y
<73 O 20+ )
e o VI?' (mNh + Mok + )
and

= A
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‘The four multiplecs differ in the number of N quarks. If it is assumed that the
symmetry breaking completely resides in the fact that the \ quark is some 150
MeV more massive than the (5,#) doubler the mass pattern of the decuplet can
be understood. When chis aegument is applied to the meson octet, it does not
work as well with a 150 MeV mass difference. However, the telations

#in = 2y + binding

mg = My -+ # + binding

2 1
iy 3 {(2m) + 5 (2mn) L binding
(the factor 2/3 coming from the probability of finding the #° in the A\ state)
lead wo

1
me = {3my + mm) (26-20)

which is known as the Gell-Mann Okubo mass formula. It works to about a
10 percent accusacy, but is very good if the relation is written for the squares of
the masses. Incidenrally, the same formula will work for other aceets, and for
the baryons it will have the form

%(mf- ~+ ms5) = }1 (3t + m3) (26-21)

It is quite accurate, and is samenmes used to estimate where partnets of incom-
plete octets might be located.

The quark model leads to many other predictions. For example, if it is
assumed that at high energies all quarks and antiquarks interact identically,
leading to equal cross sections, then ir follows thet in PP collisions there ate
nine possible intetactions and in 2 collisions thete are six, so that

a{PP}
a(xl)

= 3 (26-22)
2

Surpristngly, this simpleminded counting wotks vety well, both in this instance
and in*many more. It is an urgent and as yet unsolved problem in particle
physics to understand why quarks, which must be very massive if they exist ar
all, since otherwise they would have beeen seen, acr in such 2 simple additive
manner, Other questions remain, Why do three quatks bind, but nor two?
Mote decailed considerations show that quarks, even though assumed to have
spin 1/2, act as if they did nor obey fermianimc statistics. Why is this so?
We do not know,
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G. Parity Nonconservation
In addition to the strong interactions and the efeccromagaeric interactions,

chere exist, in narure weak interactions. They were first discovered in beta decay,
that is the reacrion

NPt e+
and related reactions such as positron decay

PoN+tet+4v
and the caprure reaction

e+ PN+

with the last two occuming only in puclei, What was observed was a nuclear
decay of the form

(A,2) > (AZ+ 1) + e

The electrons did not come out with a fixed energy, as they would have to if this
was a two-body decay, although the maximum electron energy matched that
available for a two-body decay. Faced with the choice of giving up enetgy con-
servation Ot proposing a new particle, Pauli in 1931 postulated thar there exista
neutral particle emitted in the reaction with the electron. The properties of
the new particle, named the nemring, were the following:

1. Charge conservation required thar it be electrically nenttal.

2. The equelity of the maximum clectron energy to the available energy
required chat the peutring mass be very tiny; it is now believed to be zeto.

3. Studies of the spins of the initial and final nucle] required the neutrino
to be a fermico. It is now known to have spin 1/2.

4. The neutrino was not found when it was first postulated. The reason is
that it intetacts very weakly with mertter. The cross section for neuttino absorp.
ton could be calculated with 2 dewiled theory proposed by Fermi in 1932, and
it was shown to be 10~ cm? at low enetgies. Thus, in spite of its esoteric naturse,
the exiscence of the neutrine was accepted by most physicists, and it was finally
identified in 1954. Nowadays neutrinos coming from the decay of high energy
pions are used to study high-enetgy neuttino-nucleus collisions,

"The Fermi theory of betz decay explained a class of weak decays, including
those involving 2 new particle, the muon (), which is for all practical purposes
an electron of mass m.® = 105 MeV, which was discovered in the 1940s, It conld
also exphin in principle, if not in detail, decays such as

1r+—-+(;:)+r
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since these could occur chrough the steps
st —= P4 N

P—>N+(’:)+v
®

with the N-N annihilating. With the discovery of the strange patticles, weak
infetactions not involving electrons, muons, and neutrinos appearcd on the
5Cene, as in

A—>Pt
and
Kt — 5t + £°
Kt —uxt 4+ pot 4 5=

The latter decays atracted much attention. As the experimental data began ta
point 1o the facr that the K meson had spin 0, & paradox atese. The decay

K—2x

into twe spinless particles implied that the orbital angular momentum also had
to vanish. Since both pions were of negative parity, the implication was thac the
K had positive parity. On the other hand, a detailed study of the enecgy distribu-
tions in the decay

K— 3z

suggested very strongly that all three pions were in § states relarive to each other,
as might have been guessed from the small amount of kinetic energy available
to the chree pions in the decay. This meant that ¢the parity had to he (—1)%
that is, odd, since thete were thiee negative parity particles ia the Bnal state.
These conclusions were inconsistent with the well-established principle of the
inveriance of the laws of physics nader space reflection.

In 1956, Lee and Yang, in 4 very impottant paper, raised the question,
How do we really know that parisy it conserved in ihie weak iteractions? Thete was 0o
doube about the validity of perity conservation in rhe electromagnetic inter-
actions, Parity copservation implies some selection rules, and these are satisfied
to 2 high degree of accuracy. This degree of accuracy is not high enough, how-
ever, 1o say anything about the conservation of pasity at the weak interaction
Ievel. In the direct study of weak interactions, rthete ‘ate also some selection
tules; for example, the K should not be able to decay into 2x's and 3x's! In
genetal, what is needed to check parity nonconsetvation is to examine a physical
observable that allows us to distinguish between cur world and a “warld re.
flected in a mirror.” The question immediately arises, Would not a state of an
electron, moving with momentum p, be reflected into 1 state with momentam
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—p, and would nor this distinguish between the two worlds? The answet s that
this would not, provided that both states are equally probable, so that if we see
an electron with momentumn —p we are not forced to the conclusion that we
live in the "mirtot”’ world, The existence of elliptical orbits in planetary physics
is not evidence against the invariance of the Jaws of gravitation under rotations,
unless some elliptical orbits are preferred to othets. Thus to distinguish between
our world and the “mirtot” world mote subtlety is needed.

Suppose we had a one-dimensional potential that violated patity con-
setvation, thac is, Suppose it was of the form

Vix) = Vegeal} + Voual%) (26-23)

and suppose that Foae(x} is very much smaller than Vel If 22(x) are the
eigenvalues of

]
Hy = P_ + Vewn(x) (26"24)
2
then the lowest order energy change due to the presence of Vi 4a(x) is

8E, = f e 4¥(2) Voaa(x) 2) (26-25)
Now the Hamiltopian Hy is even in x, and hence, as discussed in Chapter 4, the
cipenfunctions #.(x) can be chosen as eigenswtes of che parity operator, that is,
they are either even or cdd. Consequently, AE,, vanishes, that is, a mecasutement
of the enetgy cannot be used o distinguish becween a wotld and a “micror”
world. The second-order £netgy shift will not vanish, but since it is quadratic
i Vogal®), its contribution will be the same in the two worlds. The argument
can be genetalized.

We can similady argue that a determination of a decay tate cannot dis-
tinguish between the two worlds. If pariry is not conserved, it is possible for
the matrix element for some transition to have the form

M = Mepen + Moga (26-26)
By the Golden Rule, the decay rate has the form
2x
=3 >

2 .
Meven + Modd p(E) (26-2?}

En the “mimor” world this takes the form

2

p(E) (26-28)

R":E_E“TZ\MM_MGM
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On the face of ir, it looks as if the decay retes ate different. We must, however,
be careful in describing the difference berween the two tesms. First of all, Meeq
must be a scalar; it cannot be a vector, since this would single out a direction
in space and ultimetely imply lack of angular momentum conservation. Thus if
there are mementa P; in the ptocess, then My, o be a function of various
products p;-py. If there are spin vectors present, chen it can also depend on
8:-8;, and on (p:-8,)*, bur not on p.-8;, since the fast is 2 psendoscalar quan-
ticy; wherezs momentum changes sign under an inversion, the an gular momen-
tum does not (e.g., r X p does not, and hence the spins caanot), On the other
hand, M qq must be lineat in a pseudoscalar quantity, Thus if there are more thag
three independent momenta in the final state of a decay, a possible pseudoscalar
is pi-p2 X Pa. In two or three body decays, the pseudoscalars must be of the
forn 8-p where S is one of the spin vecrors and p is one of the momenta.
Hence, if for definiteness we assume that

M=A4A4+BS.p (25-29)
then
2 Men £ Mogal® = 20|47 + L [B2 (S pp
&2, (AB* + A*B)S - p (26-30)

In a decay rate the spin stares are usually summed over, that is, no measurements
involving the corrclation of the spin and momentum are made. In that case the
last tetm vanishes, and the rates are the same for the world 2nd the “mitror”
wortld. It is only if the presence of a correlation such as 8-p is measured, that is,
if a piendoscalar guantity it measured, that parity nonconservation can be detecred,

Lee and Yang then suggested several experiments involving the weak
intetactions in which such cotrelations could be measured. Within a few months
of the appearance of their paper a number of experiments showed that pariry was
Iucdeed vivlated in the weak interactions. What does this do to the cherished notion
that the laws of nature should be invaeiant under inversion, that, so to speak, it
should not be possible to instruct an extragalactic being on how to make a right-
handed screw? it now appears chac the weak intetactions not only vialate parity
cons¢tvation, but are also not invatianr under charge conjugation, They ave
Irvariant snder combined charge conjugation and imversion, CP. Thus, from 2 routine
artempt to determine the parity of the K meson from its decay grew (a) the
experimental verification that patity is not conserved it the weak interactions,
(b) subsequent clarification of many aspects of the weak interactions, not
possible before parity nonconservarion had been observed, and (c) the discovery
that nature shows more imagination than physicists, as in supplanting € and P

by CP invariance, .
L
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H. The K° — K° System

As our final topic we discuss the implications of the consequences of the
strangeness theoty chat the K9 is not identical to its antiparticle, the K®, since
these implications make use of simple quantum theoty and ate quite starling.

" As noted before, what distinguishes the K° from the K7 is the strangeness, and
in a production process it is dear which of these is produced. Thus in the
reaction

4+ P—A+ K
we know that a K° is produced; in the reaction
K+PoN+K°

we also know that it is the X° that is produced. Given that the paricles are
pseudascalar, we find that

CPIKy = —|K%)
CPiK*} = —|K%)
Thus both K° and K° may be viewed as linear superpositions of CP eigenstaces;
if we write
1 B = — (- )
KD:V?“”“ K_\/E( K+ K} (26-31)

it follows that
CPIK) = |Ki) CPIK) = — K} {26-32)

Since CP is consetved in the weak interactions, and the whx— system with zere
angular momentum is even under CP, in the decays

K — gty

K — gtm—
it is really only K thar is decaying. Both Kj and K; can decay into some of the
other modes, for example,

In genetsl, both K° and K° ot Ky and K; are equivalear basis states in a two-state
space. The suong interaction production process acts as a polarizer, producing 2
patticular particle K°, say, or equivalently, a particular coherent mixture of
K, 2nd K: (coherent, in the sense thar the phase relationship is fixed). After 10710
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sec strangencss no longet means aoything. The weak decay into #+2— acts 45 an
analyzer, and it picks out Ki. Gell-Mann and Pais in 1953 pointed out thar the
remaining K component persists, and, since it cannot decay into the Z#r channel
avaitable to the X), ptesumably has a longer lifetime and should be looked for,
with one of the alternative decay modes. The K; was looked for and found. Tt
had z lifetime of abont 5 X 10—¢ sec compared wich 0.8 X 107 sec for the K.
Othet interesting effects emerge. Pais and Piccioni noted thae if one starts with
a K° beam, then after 10710 sec one is left with 1/4/2 K, that is, a beam of the
form 3(X° + K°). If, before the Ko decay can take place, matter is interposed,
then, because of the different strong interactions of the K° and che K° com-
ponents, for example,

K+PoSK+P R+ PK+ P
K+PaKY+ N K+Pox4 g

K+ N—-K 4+ N — Z° 4 gt

the particular phase redation is desuoyed, and one no longer has a pure X; beam.
Hence, 27 pairs will again be scen, since the mixtute now will involve some K.
Thus under the idealized conditions dhat all the K° are abscrbed, and the X°
merely scattesed in the forward direction, what emesges from the intetpased stab
of material is }K°. The phenomenon, known as regeweration, has been observed
and studied in detail, (See Fig. 26-11.) The verification of the prediction of
Gell-Mznn and Pais adds strong support to our belief in the validity of quantum
mechanics as the propet framewark for the description of subatomic phenomena.

This is a good note on which to end. The reader, baving mastered the
matetial that we have presented, is ready to go deeper into the study of quantum
mechanics, in which more sophisticated mathematical toals are necessary, Such
a study will bring him or her co the frontiets of knowledge, be it in the investiga-
tion of the structure of elementary particles at energies of billions of volts, the
propetties of matter ac 1072 K°, or the nature of nuclear matter on the surface and
inside 2 neueron star, Whercver he or she chooses to go, there will be excitement
and surprises.

A? observed
B |
_____________ Fl t 1 —
Proton U = (K, + K " K, =LK, +
target { 1 ?’ r { 3 i (] Ku)

-
Fig. 26-11. Schematic drawing of regencration experiment.
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Problems

1. A 10 MeV positron collides with a hydrogen atom ac test. Write down
the energy and momentum conservation relations, Taking into account the fact
that the proton mass is M,c? = 940 MeV, what will be the energy of the emitted
photon from the reaction ¢™ + H— P + ¥?

2. What is the threshold energy for che production of an antiproton in
the teaction
P+PoP+P+P+P
One of the inirial protons is at rest.

3. He? (PPN) and H? (PNN) are likely candidates for an f-spin doublet
{thete is no trineutron nucleus). Consider the reactions

7" + He?
P+D::::
o+ B

Show that é-spin conservadion predices chat
o(Het) "
o(HY)

Hint. Write out the initial state (why is it an J-spin eigenstate?} in terms of the

r's (analog of Yy,) and Hed, H? (analog of x4, x— in spin 1/2 wave functions),

as was done in (26-11).

4, Which of the following reactions can proceed scrongly, which weakly,
and which not at all, and why?
P+P—=P+ A+ KF
P+PoPH A+t
m+ P+ K
a4+ P— A" KT
P+ PR+ K+
P+P—A"+2°+ N
Kt — ot + et + ¢
Koyt + e
5. Consider a beam of piens impinging on a proton target. What is the
“threshold for K° production? What is the threshold for K- produciion?
{(Hins, Statt in the center of mass frame.)

6. Calculate the parameter @ introduced in Section D of this chapter that
characterizes the decays (2} 3t — N + ot and (b) K — at + x°. The rates are
0.6 X 10" sec? and 1.7 X 107 sec—! respectively.
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7. A particle is seen to decay weakly (lifetime of the order of 10710 sec)
as follows:

X— gt + 5t

What can you say about the particle on the basis of this information? Consider
(a) limits on its mass, (b} /-spin, and (c) spin, parity. Into which SU(3) super-
multiplet, of the ones discussed in chis chapter, could this particle fit? What
would be the significance of the observation of such 2 particle?
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Relativistic Kinematics

In this section we surnmariz¢ some formulas that are useful in simplifying
the effects of relativistic transformations from one reference frame o another.
A typical application arises in scattering: theory deals with the center of mass
frame, experiment with the laboratory frame, and the resules of the two must be
compared. The simplifying technique to be used is based on two results from
the theory of special relativity:

{a) The scalar product of two four-vectors, A, = (A, A) and B, =
{By, B), defined by

AB = AB, = (AB, — A-B) (ST 1-1)

is snvanant under Lorentz transformations.
(b) The energy and momentum of a particle transform as a four vector

E
b= (_c p) (5T 1-2)
whose squate of "length” is given in terms of the rest mass of the patticle

#' = e = -'f—, —pt =i (ST 1-3)

In general, a collision between two patticles, leading to two particles in the
final state, for example,

Apa) + Bips) — Clpe) + 4po)

will be characterized by just two numbers. The reason is that there are 4 X 4 = 16
different components of fous momentn; chese are restricted by four mass condi-
tions (ST 1-3), and fouwr enetgy and momentnm conservation conditicns:
furthermore invariance under translation and under roration implies that six
more coodinates, the center of mass mamentum, the orientation of the scatter-
ing plane in space and the choice of axes in that plane are irrelevant,

Tor out two Invariants, we take

s = (pa+ ps)* = (pe + pp)? (5T 1-4)
461
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with the second term following from four-momentum conservation, and

# = (pc— pa)® = (pp — pa)? (ST 1-5)
Another possible choice is
#=(po — pa}* = (P — p=)* (ST 1-6)

These three ar¢ not independent, since che readet can casily convince himself chat
Pax ¥ P8 = pow + pox the encrgy-momentum consetvation law implies

5+ &+ = malet + met? + meld + o't (ST 1-7)
The invariants have the following significance,
. Consider the center of mass [rame, in which
patps=0 (3T 1-8)
There
s = (poa + pos)® — (P + pa)°
NER

£ £

& Er By (ST 19)

that is, it is, within the factor of ¢2, the squate of the rotal center of mass epergy.
We follow custom in labeling the center of mass coordinates with a asterisk.
#: The significance of # is somewhat cleater in the special (but very com-
mon) case that partticles A and C, and B and D are the same, as, for example, in
the reactions
xt+P—x+ P
and
vte—svyte
In that case, in the center of mass frame,
ps= —Ps PD= —PC
Ely+ Ep = Ec + Ep (ST 1-10)
and
w4 = Wic mp = Mp (ST 1-11})
imply that
(lee &2+ mi ehut (P:‘e &+ m%'(+}l.ﬂz
= (p& * + #h Y + (¢ ¢ + mp P
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that is, .
Ey=E: Ep=E, {S§T 1-12)
Then

(E_l‘:_ B
£ 3

)2 — (pa — poy?
= —(pi — pRH (ST 1-13)

that is, it is minus the square of the momentum ceansfer in the center of mass
frame.
Note that 1 is related to the center of mass scattering angle. The above yields

t= —pg — pe + 24 pe

= —pa* — p& + 2|ps! |pe| cos #* (ST 1-14)
The laboratory frame is characterized by pp” =
P = (mac, 0 (ST 1-15}
Thus '
s={pa+ pa)l = p 4 pa® + 204 - p5
= mal® + mp®? + 2mpE, " (5T 1-16)
and
t= (pp— pu)?
= mpi® + mpk?® — 2mzEpl
= {ps — pc)*

ma%t + mec® — 2B Bt/ + 2p,L-pot

= ma’C + mce?® — 2B4FBet/ 2 + 2|paF||pet| cos 82 (ST 1-17)
This, with the help of
Est + mpe® = Eot + Ept (ST 1-18)

and the invariance of s and s, that is, the fact thars and 1 have the same values in the
center of mass and the laboratory frames (or any other frames) allows us to
compute the teladon between center of mass scattering angle and laborarory
scateting angle, and between the energies in che two frames.

The transformation properties of differential czoss secions, do/d (cos )
are obuined from che statement, which can be estmblished when one formulates
scattering theoty relativistically, that dr is an insariant, Hence

s
)

(5T 1-19)
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is invariant and, 6 exhibit the cross section in & form in which the transforma-
tions from one frame to another ate most easily done, it is best to write it as a
function ¢ and . We will not do chis here. As a final peripheral comment we
note that the expression for the
Lp
(2=f)*

is not relarivistically invatiant. However the manifest invariance of

f. .fd‘pa(p’ — miE)

= f d'p f dpd(pt — p*t — m'?)

o
_ L _ < &p
‘f‘ﬁ’z\/m =2 fwwwm
(ST 1-20}
shows that
ep_1
E mhy (ST 1.21)

is invariant. Matrix elements in relativistic theodes always have the particles
nosmalized not according to

1 el‘l ek
Vv
but according to

1 1 :
- - elp-rf.&
V'V VE

so that the necessary factots emerge from the square of the macrix element.
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The Equivalence Principle

According to the relativity principle, the laws of physics must be such as
o make it impossible ¢o distinguish berween two increial frames that differ from
each other only in rthat one is moving with a constant velodity relative to che
other. Common experience suggests another equivelence; it is not possible
o distinguish by simple mechanicel observations whether a system is in a
uniform gravitational field ot whether it is in a gravity-free region, bur subject o
a constant acceleration of the appropriate magnitude and direction. In real grav-
itational fields, the equivalence coly holds on a scale small enough so that the
difference in gravitational potentizls between two points ry and ry is linear
in | #y — 2. Einstein proposed that this equivalence be a fundamental principle
of nature, and chat @4 laws of physics be in accord with it,

The acceptance of it has some far-reaching consequences. First of 21l we
note thar the uniform acceleration a must be produced by a force F, and these
are celated by

F = ma (8T z-1

The equivalent gravitational ficld may be produced by a mass M a distance R
away, ptovided the gravitational force
mM
F=¢G = R {ST 2-2)
is made equal to ma by an appropriate choice of M and (large) R. ‘There is, how-
ever, 0o @ préori 1eason why the inertial mass of the object which appears in the
zelation (ST 2-1) should equal the gravitational mass that enters into the gravi-
tational potential encrgy
M,
V) = -G~ (ST 2.3)

The gravitational mass enters into the above as a “coupling constant™ just as the
charges da inte the Coulomb potential, and one could imagine, for example, that

A65
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the "'masses” that entet into ($T2-3) are different from the inertial masses that
appear in (5T2-1). This is not possible if the equivalence principle eeally holds.
Suppaose, for example, that 2 rather extreme situation were to hold: electrons are
not subjecr to gravicacional forces. In thar case che inertial mass of an atom is
(approximarely) M(A,2) = AM + Zm where M and # are the nucleon and
electron masses, respectively., On the other hand, the gravitztional mass that
enters into (ST2-3) is just AM, wo the same approximation. Thus, inside a
satellite a mass of kad might be floating, wheteas 2 nrass of material for which the
Z/A ratio is different would fall. This sugpgests an expetimental test of the
equivalence principle; according to the principle, all materials should bebave in
the same way under a combination of gravitadonal and centrifugal forces. This
test, showing the equivalence berween inertial and gravitational mass, has been
carried our, and established to an accuracy of one part in 10" in recear experi-
ments by Roll, Krotkov, and Dicke,! but was known t¢ be true to an accuracy
of a few parts in 10° from early experiments of Eotvds (1890, 1922). The prin-
cple of the expetiment involves suspending two egual masses of different
materizl (geld and aluminum) from a torsion balance. Any difference in the
aceeleration of the two masses toward the sun as the earth moves in its orbit
would result in a deflection, which in fact, was oot observed,

Another consequence was mentioned in Chaprter 2 and in Chapter 22
{Section B). A photon of energy F has gravitatiogal mass E/¢: to establish this,
we consider an atom in an excited state, with mass M* ac a height » above some
reference level. The wark done to lift it to that height is M*ge. When the atom
decays to the ground smate, of mass M, a photon of epergy M** — Mc* is
emicred.

Suppose that the photon is absorbed at the reference level. The coergy
absorbed is (E + E,) where E, is the gravitational energy chat it acquired in the
falL. If the atom in the ground state also drops to the reference leves, the rotal
work done by the gravitational field is Mgy on the arom. If the absorbed energy
is used to excite the acom back to the state of mass M*, we are back to the original
situation, with M* at the reference level, provided

Mg = E, + Mgx (ST 24}
Thus

E -
By = (M*— M) gy = i (ST 2-3)

Considet now a photon at a height x. Let its frequency there be », so that
'  B=h (ST 2-6)

! For a demiled descripdon of the experiments, see R H. Dicke, The Theoretival
Sigmifi of Expery I Relativity, Gordon and Breach, Science Publishers, New York

BT

(1964).
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The photon energy at the reference level is

- £
E+ B, = E(1+ )
gx .
‘"whv(l-}-—‘g) (ST 2.7)

This must equal k', whete 1 is the frequency of the photon measured at the
reference level. Thus the relation

V=0 (1 + g_x) (ST 2-8)
&
implies that the frequency of the photon is raised and
Ay £x
—_— = = 2
— = (ST 2-9)
The petiod, which is reciprocal to », is thus changed according to
C AT £x
— = ST 2-10
T = ( )

This prediction was confirmed in a tertestrial experiment done with the Méss-
bauer effect (Chaptex 22, section B). The shift is more dramatic if we compare
the frequency of an atomic emission line on the sudface of 2 massive star with
the frequency of the line on earth, There

A GM

8T 2-11
P Re? (5T 2:11)

For the sun, whose mass is 1.99 X 10% gm, and whose radius is 6.96 X 10" cmn,
the shift is small, Av/v = 2,32 X 107 This has been measured for the sodinm
line io sunlight (Dicke, loc. cit.) and ohservation agrees with theoty to 5%,
The shift is called the gravisational red shifs since the earth is “up™ relative to the
sun. :

Another prediction follows by analogy with electrostatics. Just like &
charge is deficcred by a Coulomb feld, with a deflection angle given by

&2

e

n 2 L ST
n—-= P _ {ST 2-12)
where Ze and ¢ are the two charges, = the mass of the moving charge, ¢ is its
asymptotic velocity, and & is the impact parameter, so will the photon be de-
flected by a large mass, for example, the sun. Since the farce law is the same, we
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just make the substitution Ze* — GMm and v — ¢ The impact parametet is
roughly the tadius of the sun, so that for two stars,
gL (ST 2-13)
~ -

The numerical value of this is 0.83"". The actual measured value of this, observed
by looking at stars acar the rim of the sun during a total eclipse, is just twice
this value. The explanation of this discrepancy lies in the Einstein Theory of
Guavitation, which is beyond the scope of this book.

It should be stressed that Planck's constant does not enter (ST 2-8). The
resulr is & purely clessical one, and can be derived without the use of the con-
nection E = hv, which is a convenience, buc not necessary.? ’

*The original peper of Einstein is very readable, and is reprinted io translation in
T'ke Princivle of Relativity, a collection of otiginal papers, published by Dover Publicaxions, Inc.
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The Wentzel-Kramers-Brillouin

Approxjmation

This approximation method is particularly useful when one is dealing with
slowly vatying potemtials. Exactly what this means will become clear later, One
waats o solve the equation

()
At

+ 2B~ Vil ) = o (ST 31)

and to do so, it is wseful to write
(%) = Rx) £ (5T 3-2)
Then

. p ) .
%:[m 2R ﬂ—iR(%)Je’“‘m(STa-s) _

P L R M v S b w

so thac the diffezential equation splits into two, by taking the real and imaginary
parc of {ST 3-1) after (ST 3-3) has been substituted. The imaginary part gives

) 4R 45
+

R TR s

0 (ST 3-4)
that is,

F4 ds

;(l()g—:& + 2 Iog R) =0

whose soluticon is

B%

c
= (ST 3-5)
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' The real part reads

ﬂ__l (is_)’_{_Zm[E—*V(x)]R:
dxt it dx ks

which, when (5T 3-5) is substituted, becomes

PR C 3 2E— VO

0

A R K 0 §rs9

At this point we make the apptosimation that’

1 &#8 G 1 1 fdSy
R SERT ﬁ‘(dx) (5737

so that the equation becomes

< = 2l - (9] 6T38)
Thus
== VaniE— V) 5T 39)
and hence
5(x) = f : dy m (ST 3-10)

The condition for the validity can be translated into a statement abour the
variation of V(). 1t will be satisfied if 17{x) varies stowly in 4 wavelength, which
vaties from point to point, but which for slowly varying V{x) is defined by

i i
_—— = T )
: M) P {12mE — Flx])ve (57 3-11})
At the points where
E-Vg =0 (ST 3-12)

special treatment is required, because in the approximate Eq. ST 3-8 R(x) appears
to be singular. This cannot be, and this means chat the approximation (ST 3-7)
must be poor there. The special points ate called terning pornis because it is there
thet a classical particle would turn around; it can only move where E— V(x) > 0.
The way of handling solutions neat turning peints is a lirde too technical to be
presented here. The basic idea is that we have 2 solution to the left of the turning
point [where E > V{x), say], of the form

$x) = R &5 ¥ SEmE=T D) (8T 3-13)
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and a solution to the right of the turning poinc [where E < F(x)), and what we
need is a formula that interpolates between them. In the vicinity of the turning
point one can approximate +/{2m/k%) [E — F{x)) by a straight fine over a small
interval, and salve the Schridinger equation exacely. Since it is & second-order
equation, there are two adjustable constants, one of which is fixed by fitting the
solution to (ST 3-13) and ¢he other by fittting it to

¥(x) = R ¢—J5 & YEarmwo) -& (5T 3-14)
the solution 10 the right of the tuming point ! The above solution decteases in

amplitude as x increases. The total attenuacion at the next turning point, when
E > W{x) again, is

Y(xr) —

Ve

which is just the squate oot of the transmission probability that we found in
Chaprer 5.

exp ’ - ﬁ“ é{(m-_mwm—z]‘} (ST 3-13)
1

' Por more denils, see almost any of the more advenced books on quanturm me-
chanics, for ezample, ). L. Powell and B. Crasemann, Quartnms Mechanier, Addison. Wesiey
Publishing Co. (1961); L. I Schiff, Quinm Mechanics, McGrw-Hill Bock Co. (1968).
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Lifetimes, Line Widths, and

Resonances

In this section we will discuss a slightly improved ccearment of mansition
rates, which will indicate how the exponeatial decay behavior comes about.! The
limited mathematica) sophistication assumed of the reader will make the treat-
ment somewhar less elegant than is possible.

To simplify the problem as much as possible, we consider an atom with
just two levels, the ground state, with energy 0, and a single excited state, with
energy E. The two states are coupied to the electromagnetic fiekd, which we will
take co be scalar, 5o that no polarization vectors appear. We will only consider
the subser of eigenstates of H, consisting of the excited state gy, for which

Hy = By (ST 4-1)
and of the ground state 4+ one photon, ${k}, for which
Hup(k) = elk) ¢(k) (ST 4-2)

and limir ourselves ta these in an expansion of an arbitrary function. This is
ceftainly justified when the coupling berween the two states, ¢ and ¢(k) through
the potectial V, is small, as in electromagnetic coupling, since then che influence
of two-, thiee-, . . . photon states is negligible. Noce that

{lel)) =0 {ST 4.3}

even when the k is such that the energies (k) znd E are the same. The states are
orthogonal because one has a photon in it and the cther does not, and because
for one of them the atom s in an excited state, and for the other it is nor,

The solution of the equation

£
() = (K + V) ¥ (ST 4-4)
1 'This was first derived by Weisskopt and Wigner {1930).
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may be written in terms of the complete set
) = ald) ¢ e + f Fkbk,?) $lk) ¢ I (8T 4-5)
When this is inserted into (ST 4-4},
- gt & + Ea e~ g,
a
+ 7k f Ik g{;:,_:) e MR g(k) + f dke(k) blk,t) ¢ g(k)
= 5al) % g+ [ el W) O oW

+ alf) PR e f Frbkp) ¢~ sy

resules. If we take the scalar product wich ¢y, we get
da

!ﬁd’

) Vi) + f i) HR IR (g ] 40k))

Since V, acting on 2 state, is supposed to change the photon number by one,
) Vg = 0. With the notion

ek} — E = halk)
(Vo) = M(k) (ST 4-6)
the equation becomes
& J“_(r) = | Pkbk = ()2
"= f g e Mik) (ST 4-7)

If we take the scalar product with ¢{q), and again use photon counting to set
{o{q) | V]|a&)} = 0, we get, after a lirde manipulation, using 2 normelization -
that

@@l = & — @ (ST48)
the equation
i &—igﬂ = alf) & M¥(q) (ST 4-9)

Since b(k,0) = 0 if the excited state is occupied at § = 0, a solution of cbis equa-
tion is

bk = % MHL) f u' & 7 4t (ST 4-10)
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We now insert this jnto (8T 4-7) to get

daty) _

1 3 sl ¢ sy i
= 2 fd"k[m(k)l fo 2 alth ¢ (8T 4-11)

Next multiply both sides of the equation by ¢ ™ and integrate over time from
010 =, On the lefr hand side

fm-"? - fgﬂ% ™ )] + x[mdu“”att)

= :\Lmd;:*" N —1 (ST 4-12)

whete we have used
at) =1 (ST 4-13)
On the righrt side we have

1 o , i .
- Ffd‘klMCk}]’f a&e‘“e"‘”m'[ dt'a(s’) A0
o 0
Now, as can be seen from Figure 8T 4.1, the integral
[ aemseon [ g o
[ 1]

aver the first octant in the 2#~1° plage, can alsc be written as

_ f " dar) P f " oy
0 ¢

=z

rl /

—

Fig. 8T4-1. The integration over the first octant can be done either by holding
£ fixed, integrating along the vercical strip, and then summing the strips from £ = 0
to # = <, or by first teking the integral along the hotizonta! strip from ¢ = # 1o
# = o and then summing over all the hotizontal suips from # = 00 £ = o,
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and hete, the last integral can be done, so chat

(- DR

At fo(k)

_ L \ME) > 7 L
ﬁzfd‘kh_i_;w(k) | Hal) e (ST44)

hfmdre‘”a(t) -1=- El;fd‘klm(k)l*j’m P (4 e

We can solve for f dial() ¢ ™ 1o ger
n

f , e = 1 | M(K)|? (ST 4-15)

Mo ) T A

The reader familiar with the cheory of Laplace transformations will recognize the
above as such. The inversion of the Laplace uansformation of the above form
needs some discussion, which can be found in the more advanced licerature, We
will ergue as follows. Although we do not know how o extract alf) from the
above, we can examine the relation in the limit that X — 0, If we make the
Anratz

2 = 7% ' (8T 4-16)
we pet, '
1 _ ) _ 1
2+ x i | M) |?
LT f Pk w(k) — A
which implies in the limit A — 0 that
\ i | M(K)|*
7= — M T 4-1
R R T f ) — (ST 417)
We can write this as
i [ ML
e= Lim — g | R G 1
— Lim i | M) * wlk)
o+ B wi(k) + M
1 X
— | 2 7 : ST 4.
+ 5 fd IMB 1 (ST 4-18)
Jn evaluating the real part of z we make use of the relation
Lim — o — o k)] (ST 4-19)

o+ wik) + A2




Lifetimes, Line Widths, and Resonances 477

so that finally, we get

- g MW w .
r= - fd“k ok ﬁfd’kw(k)i o[ (k)]

(ST 4-20)
When this is exponentiated, we find that the coefficient of ¢ in v is
¢ VR g (ST 4-21)
where
2
v = I [ vi00) % i) - 1
1
4 | -
Popt [oeirinon s eTem)

Thus the probability of finding ¥ (i) in the stare ¢ after a time ¢ is, to the extent
that our solution is approximately correc,

Calplrt= 7 (ST 4-23)

where v is the decay rate calculared in perturbation theory. Furthermore, the
oscillatory behavior of «(#) is characterized by the energy E of the stae §,,
shified by the second order perturbation ewergy shift, as comparison with (16-16)
shows. The only difference is that the intermediate states summed over here
form 2 continuum, and thus the limiring ptocess shown in (ST 4-18) must be
used to define dhe integral when the energy denominaror can vanish.

Another quantity of interest is the probabilicy that the state Y{#) ends up in
the state &(k) at 1 = =. This is given by |5(k, «}|2, where, according to
{ST 4-10} and (8T 4-16), we have

1 * :
mﬂ=3wmf#ﬂww

1]

_ M) 1

P 2 .
'{ffﬂﬂ&ﬂﬂhﬁﬂ—fd

where
[ — 5 gf M)
A= ) kel
Thus
M*k)

_ _IMED2 (ST 4-24)
®) E—-fd"k;-_—;@+m/z

¢k, =) =
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and the absolute squate of this,
| Mk} |?
[k} — E — AF]* + (iv/2)

|60k, )|t = (ST 4-25)

yields the Lotentzan shape for the line width, that is, the photon energy is
centesed about the (shifted) energy of the excited level, with the willth described
by fiv/2. The energy shift is small, 2ad vsually ignored.

The same form appears in the scattering problem, Consider dhe scattering
of a “photon” of momentum k; by the atom in the ground state. The state of
the system is again described by equations (ST 4-1, ST 4-2, ST 4-7, and ST 4-9)

except thar initially, which hete means at # = — =, the state is specifically
given as ¢k, so that
blgd = dq— ki) atr=-—o (ST 4-26)

Hence the integration of (ST 4-9) gives
I * H i
blq.y) = &(g — ka + ] M* @) f dt'a(t’) gl {ST 4.27)

The quantiry of interest is the amplitude for a transition into a final state in which
the phaton has momentum k; at # = + =, that is, it is

k)| ¢+ =) = bk, + )

= iy — k) — & M*0) L &alr)
{wy = wik()) (ST 4-28)

using the previous equation.
Substituting (ST 4-27} into (ST 4-7) yields the equation
dals)
dr

M) - f N e I
(ST 4-29)

L
#h
‘This may be intcgrated, taking into account that #(— =) = 0, to give

)_ f d;-' — st

] . v : o
- f k| M(k) 2 f A ¢ f &'ald &M (ST 4-30)

¢ .
Now the intcgralf dt' e is not well defined. The standard procedure is to

write it in the form
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E N . e—r'l:m-l-ib)f
Lim | df et — 1im

—0 J g 0 g+ Fe

(ST 4-31)

The use of a convergence factot, which is then allowed to vanish in 2 well-
defined way, is somewhat similar to the treatment of the Coulomb potential as
the limiting case of a screened Coulomb potential in Chapter 24. Mext, as can
be seen from Figure ST 4-2,

p

Fig. ST4.2, The integral in (5T4-30) can either be written as a “sum™ of the
vertical strips, as in the equation, as or, a sum of the horizontal strips, as in {ST4-32}.
The same intetchange of orders is nsed in Eq. (ST4-33) except .that the verrical
line at ' = #is shifted to + =,

. tr o : T .
f‘ & '—m(k)t'f df"d(#”) e‘»{k)f - [ df”a(:”} ‘w[i)t' f dt’ f—-"“(k)"
—m —m —_—r !

1
. ‘knd(‘”)[e—?m(k}(r—l‘”) - l]

_ F4
 wik)
so that
Mik;) e~ f |MCk)| f ; — il (=)
W= ctia BT TN -
{ST 4-32)

According to {ST 4-28) the quantiry of interest for nonforward scattering (so that
the first term can be ignored) is
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” ot M(k") © r{uar —en)F
L., dra(l) € ﬁ(«u T ze) Tm“

2aM(ky)

= ot i P T
ﬁaf tMEll:”!f &' (f” f P {‘m{kll" TR ) ei.oﬂl
Yy

(ST 4-33)

where in the last term we again rewrote the integral with thie help of PFigure
ST 4-2. The f-integration can again be done with the help of the convergence
factor trick, so that (ST 4-33) now reads

= i 2EM(K) 8y — 90)
f halr) = et

_l !M(kjis ® 1 patey  Fud'
+ﬁzfd‘k (k) _wa';a(tje

1
X [w,- —wlk) +ie  wr+ ie:l
which is in the form of an equation fot the unknown. This may be solved to give

- ot 2 Mk 8wy — wi)
I e s
[.M(k) |2 (ST 4-34)
fizw;[da - w[k) + e
Hence, in the nonforward direction
bk, ) = — —% M) - 2%M{ks) 6oy — 03)
% 1
, [M k)|
o e = B Rull) + e
_ — 20i By — Fod) M{k:) M*Ck,)
B 4-|M(k)|2 Z ? fle(les) —
e — & — [an LUy [ o) At = <0

(ST 4-35)

The amplitude peaks strangly when the incident {and fial) energy & (=¢) is
near the encrgy of the excited state of the atom, shifted to E + AE, as in (8T
4-25). This justifies the comments made at the end of Chapter 18,
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The Yukawa Theory

The earliesc nuclear physics experiments such as the scattering of a
patticles by light nuclei, and the study of a decay lifetimes,! showed that the
nuclear forces wete such that the radius of the nucleus (with A nucleons) was

R = nA'® (ST 5-1)

with 75 = 1.1 X 107" em. Thus the nuclear density (nucleons/unit volume)
was 2 constant independent of A, With long-range forces, such as the electro-
static forces, thete would be A{A4 — 1)/2 “bonds” and one would expect the
density to increase with A, since the kinecic energy only increases linearly with 4.
The constancy of the nuclear density thus strongly suggested shott-tange forces.
‘These forces, leading to binding energies measured in MeV, rather than electron
volts, had to be significantly stropger than eleciromagnetic forces.

In search for 2 mechanism thar would give tise to such forces, Yukawa in
1935 drew on the insights gained from the successes of quantum electeo-
dynamics and proposed his #eson theory of nuclear forces. At the level of this book,
only & qualimtive description of that theory can be given. The interaction be-
tween two charged particles ac rese {or very Jow velociries) can be described in
tetms of an “action-at-a-distance’ Coulomb interaction. A motre accurare
description involves the field concepr; the charged particles are sources of, and
interact with electromagnetic fields (E,B) and thus they interact wich each other
through the intermediaty of the field, In a description that is accutate on the
quantum level, the elecwomagnetic field is quanrized, and the quantz, the
photons, ate the carriers of the field.* Two charges can interace by the following
mechanism. Charge “1”" emits a photon. We know from energy.momentum
conservation thar chis cannor be a real photon, or equivalently, a teal process;
either the photon has an energy that does not correspond to its momentum

~ 1See the discussion of mnnelling in Chaprer 5.
£ This is somewhar fuzzy Janguage, and should nec be taken licerally. In parricoiar,
it would be wrong to think of a photon semehow carrying 2 cloud of field with it
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(i.e., E = pe), ot, the phoron is real, but enetgy is not conserved in the reaction’
a—a+ 7

When that photon is absorbed by charge 2" the imbalance in epergy can be
cotrecred, since that process

T+ ey

also cannor conserve energy. The question is, why should such an “'ezchange™
of phatons give rise to an attraction of repulsion berween charges? The answer
teally is that our visual description of the exchange is just an intetperation of the
second-order perturbation epergy shift due to a pertutbing potential f,. The
formula (16-16), describing the energy shift from the interacrion-free energy of
two charges &) and ¢, reads

3 _ {ﬁfﬂ|Hl|”>{#lH1|€1eg}
foo = Ji;t::u E. — E2

The sum is over all intermediate states that can be obuained from Hy acting on
the state |&e: ). Our verbal description corresponds to the interrediare seace in
which & is ir its initial state, and ¢ has, through dhe action of H;, emited a
photon, so that [#) = |&'v.e;) hete. The energy of the intermediate state is the
recoil energy of the & 4/ (pe)* + (m.c*)?, plus the photen enetgy pe. The sum
over intermediate states cottesponds to an integration over &ll possible photon
momenta consisrent with momentum conservation, that is, an integtation aver
all directions, Since the charge 2" could be the one that emits the photon, ane
muse also calculate the contribution from the emission of the photon by ¢;and
its absotption by ¢. We will not do the calculation showing that the Coulomb
potential emerges, because, in fact, electrodynamics is rather subtle. The caleu-
lation wll be done for mesons.

What Yukawa suggested in his extremely significant paper is that there
exist & meson held, that is, a Geld that is different from the clecttomagnertic field,
whose quanta, the mesons have a finite mass, which is coupled ta protons and
neuwons in a maaner analogous to the coupling of photons to charged parricles.
The exchange of these quanta will then give tise to an interaction berween nu-
cleons. In this way, interactions as different as eleccromagnetism and the nudear
forces would at leasc share a common universal mechanism.* Let us go chrougha

(ST 5-2)

3 We assume momentum conservation in both points of view. They murn out 1o be
completely eqnivalent,

£7The idea that all intetactions proceed theough an “exchange” of quanta has geined
snch wide acceprince that even the weak interactions are believed by maoy people to be
mediuted by 2 “weak inwrmediate vector meson”” whose propecties are deduced fiom what is
known abour the weak interactions. Such a parrcle has not been discovered, bur it is quite
consistent 1o assuene that it is very massive, which would explain why it has not begn seen at
existing accelerators.
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very simple calculation assuming that the meson field is scalar, and that we can
wiite the simple Hamiltonian for the nucleon in interaction

_F
H= o Zlr. (8T 5.3)
The meson Geld will be written in analogy to the vecror potential in (22-27) as

AT .
B(r,r) = (—2 Vﬁ) " e™™  (absorption)
(o)

I ire
+ (21”%) M temission) (5T 5-4)
WV

We are not in & position to justify all the factors. The appearance of @ in the
normalization factor has the same soutce as in the photon problem; it comes
from the: fact that the snergy of & meson quantum is fw, The momentum of the
meson is Ak, and singe the meson has a mass, y, we now have the Energy-
momentum relarion

() = (Ake)* + () (ST 5-5)

Let us now calculate the various terms in the second-ordet encrgy shife (ST 5-2).
When nucleon **1" ¢mits the meson, we have

{N\ + meson |gd| N} = g(zﬂsﬁ) e TR (5T 5-6)

Ne reference is made to nucleon 27, since it is unaffecred by F; duting che
emission by 1. The absotption by 2" leaves 1" unaltered, and what entets is

{N2| g9| N2 + meson) = g(zﬁ) £ (ST 5-7)

‘The energy denominacor is
Ejerm — Bigiral = (Bwy + Bys + fw) — (Eny + Bwp) ~#w (ST 5:5)

Ex, differs from Ey, since nucleon “1”" recoils wpon the emission of the meson.
However, the tecoil energy is (k)?/2My and chis is generally small in the non-
relativistic approximation, since the nucleon mass is so Jarge. Hence the energy
denominatot is just fw. Thus the enetgy shift is given by

2acth
AE = — Z "7 ggeﬂ:-n ‘r—J'k-hE

The sum is over all meson momentum states, and as always, this means an
integration over the phase space

v &
b fczrms [ (7519

1




484 Quanturn Physics
Hence

Pt g’ gﬂl-(n—nl
- K
Ak v o Vf e

- _ L‘f_‘ifﬂ Pl

4z K% + (pe/B)y
- gg er‘t-{h—h)
= — _— T 5-
i fﬂk’+Uw/ﬁ)‘ {ST 5-11)

Note that we did not take into account momeéntum conservation, but integrated
over all momenm for the meson. The reason is thar, in effect, we treat the
nudeons as infinitely massive {they do not tecoil and are always at v, and T,
respectively) and thus any meson momentum is allowed in the intermediate
stace, Remember thar this is a very crude calculation!

‘The integral can be done [it is in fact the three-dimensional Fourier trans-
fomm of (24-87}], and it yields for

gg (2:); e—j“ll‘x—l’!]}‘l
4‘[2 dr |l?1 —_ 1‘31

AE = —

This should be doubled, because the nucleon “'2” could be doing the emitting.
Thus the energy change due to the meson field is

e—wl ri—re| A

AE = —p (ST 5-12)

il‘x - l‘zl

The energy depends on the separation, r, and drops off fast for r > fi/pe. The
range is therefore

k
= — (ST 5-13)
FI7

Given that @ =~ 1.4 X 10~ cm, we obtain

fic - W X 3 X 10

= — ergs
. a 1.4 % 1071 &
1 (k4
¥ 3 X 107 ! MeV
1.4 X 1079 1.6 X 107
2 (30 MeV (8T 5-14)

If the mesons ate not scalar, bur pseudoscalar, then a coupling like thac
shown in {ST 3-3) does not conserve parity, since the kinetic energy is even and
the potenrial is odd uader inversion. One must therefore make 2 scalar out of

. psuedoscalar meson field, or i derivatives. There are, on reflection, rwo alterna-
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tives; ane is to have mesans always emirted in pairs, with the coupling
apt(xf) (ST 5-15)

as for che pairwise emission of photons due wo the term (¢%/2me?)A%; che orher
i5 ro construct an axial vector (an axial vecvor is like a magnetic field), and dot
it into the nucleon spin operatcr, so that the coupling would be?

f % d - V{rs) (5T 5-16)

This would allow single emission of mesons. Both couplings could, of course, be
present, If the mesons are vecror mesons, that is, essentially “heavy photons,”
then the roupling could be

- £ . )
P (1,0 (5T 5-17)

Io oIl cases, howevet, the range is sull A/uc.

The mesens predicted by Yukawa were finally found in 1947. The long
tange part of the nucleon-nucleon force is due to pi-mesons, whose mass was
found to be 140 MeV! They were found to be pseudoscalar, and, like photons,
they can be emitted in collisions or transitions. The coupling (ST 5-16) explains
a great deal abour piog-nuclecn scattering (the analog of the Compron effect) in
the low encrgy region, and Yukawa's idea is fundamental to all the understanding
we have about the strong intetactions, In detail, much more has happened,
There are also vector mesons (spin-parity 17) and spin 2 mesons, and many
others. They can all be exchanged, and emitted, and, since the coupling to the
nucleons is strong, they can be exchanged not just once, but many rimes, The
calculations are beyond present-day mathematics, and it is a cutions fact that the
nuclear force prablem, which started all this, is still less well understood than, for
example, high-energy scaccering. From our point of view, it is very important 1o
note thae even in this new realm of short distances and suong forces, there is no
teason o suppose that quantum mechanics 18 not the correce way to describe
natute,

* The facror &/ uc is just there to make £ dimensionless.
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appendix A

The Fourier Integral
and Delta Functions

Consider 2 function f{x) that is periodic, with period 2L, so that
flx) = flx + 21) (A1)

Such a function may be expanded in a Fourier Series in the interval (—L,L), and
the series has the form

) = 3 A cos 1:+ X B.,sin"f (A-2)

We roay rewrite the seties in the form

f = X st (A-3)
which is cernainly possible, since
e
o 1, . -
ltf r oS prx L (4L giner/ly

L 2

! j . HEX 1
; [ osin— = — (™ —

—inwse/ L}
L 2

3

The coefficients may be determined with the help of the orthonormality relation

X5 g gttt _ {1 m=n *s
2L ) 1L ¢} oty
Thus
1 f* ;
an =37 f__L df(x) g TRl (A-5)

4180
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Let us now fewrite (A-3) by inaoducing Am, the dlﬂ'erence berween two
successive integers. Since this is unity, we have

fe) = 2 g™ an

L : A
= 2% g TR (a-6)
T = L

Let us change the notaticn by writing

4= & : (A-7)

and

T An

-7 - Ak (A-8)
We also write

L _AG)

. A (A9

Hence {A-6) becomes
x) = A—(Q M Ab -
==X Vo (A-10)

! I we now let L— o, then £ approaches a continuous variable, since Ak becomes
S mﬁmtesuna]ly small, If we recall the Riemann deﬁmtlon of a.n n integral, we sec
' that in Ehc h:mt (A-10} :r’ay “be - wrlttcn in the form

.Q o T }r\ ©
A ‘; Ax) = v,_ ARy & db (A1)

i

The coefficient A{£} is given by

AR = v : f dxfix) e/t

N —v}?—; [_,, A f) e (A12)

Equations A-11 and A-12 define the Fourier integral transformadons, If we
insert the second equation itwo the first we get

flx) = Z—IJ 2k f Ay e {A-13)
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Suppose now that we interchange, without question, the order of integrations.
We then pet

o) = f " h) [2—1, f: db e"‘f*-”] NP

For this to be true, the quantity 8(x — ) defined by

8x —y) = -l—fm 2 ) (A-15)

and called the Dirac Delta ﬁmrmn ‘must bc a my peculmr kind of funcuon, I
must vagish when % 7 7, and Tt must tend 16 S infinity in 20 Appropridte way when
x — y = 0, since the range of integration is mﬁmresmlly small, It is cherefore
not a function in the usual mathematical sense, but it is rather 2 "“generalized

function” or a "distribution.”™ It does not have any meamllg by irself, but it
can be deﬁn.ed pwuded it always appeats In the fofm

f n""‘.-"(:r) B(x - a)

with the function f{x) sufficiently smooth in the range of values that the argu-
ment of the delea function takes. We will take that for granted and manipulate
‘the delta function by itself, with the understanding that at the end all the refations
thar we write down only occur under the integral sign,

The ollowing properties of the delea function can be demonscrated

L))

1
f(ax) = Tal 5(x) (A-16)

" ‘This can be seen to follow from _
169 = [ #10) ots — 5 (A7)
I we write x = af and y = ow, then dhis reads
flet) = ol f nften) tats = )
On the other hand, ) .
fis) = [ dnflon) ot = o) -
which implies our result.

. 1'The theoty of discributions was developed by the marhemarician Laurene Schwarre,
An imroductary trearment may be found in M. ). Lighchill, introduciion to Fourier Analysic
and Generaliged Fumctions, Cambridge University Press (1938). ’
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(i) A relation that follows from {A-16) is

§at — ) = [8(x — &) + 3(x + @] {A-18)

| |

This follows fmm the fact that the argument of the delta function vanishes ar
x = gend ¥ = —4. Thus thete are two conttibutions:

¥t — af) = H(xr — @) {x + 4)]

1 1
|x—l—a| 5(x—.z)+m6(x+ 58)

2| | [80x — &) + 8(x 1+ )]

More genetally, one can show that

B — %)
) A-1
(/)] = Z Wf’ﬂ"flx-x. (A-19)
whete the x, are the roots of f{x) in the interval of integration.
In addition to the reptesentation {A-15) of the delta funcrion, there are
othet tepresentations that may prove useful. We discuss several of them.
{a} Consider the form (A-15), which we write in the form

8(x) = — Lim f dk & (A-20)
2 [ m
The integral can be done, and we gec
1 gl gmibs
3 = Lim ———°
i—w 2T ix
in Lx
= Lim & == (A-21)
J X
(b} Consider the function Ax,#) defined by
Alxa) =0 x < —a
1
= — —2 < x<a {A-22)
2a
=0 @& <X

Then
6(x) = Lim A(x,2) . {A-23)
—
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It is clear that an integral of a product of A{x,4) and a function f{x) that is
smooth near the origin will pick out the value at the origin
Lim f dxfix)Alx,4) = £(0) Lim f dxA(x,q)
w—D a—Q

= f©)

{c} By the same token, any peaked function, normalized to unit area
under it, will approach a delta function io the Limit that the width of the peak
goes to zeto. We will leave it to the reader to show thar che following are repre.
seqrations of the dela function

8(x) =

(A-24)

H |~

%
+
&,

apd

8(x) = = (A-25)

v

{d) We will have occasion to deal with orshosormal poiynomials, which we
denote by the general symbol P,(x). These have the property that

f diPr(x) Polxc) wi(x) = bun {A-26)

where w(x) may be upity or some simple function, called the weighe function.
For functions that may be expanded in 4 series of these orthogonal polynomials,
we can write

flx) = E 4 Pa () (A-27)

If we multiply both sides by #(x)P(x) and integrate over x, we find thac

- f dyo(3) F5) Pas) (A28)

If we inserr this into {A-27) and prepared o deal with “generalized funceons,”
we {reely interchange sum and integral, we get

6= T 2o [dutd fRG)

P

- [#1» (Z P ) my)) sy

Thus we get still another representation of the delta function. Examples of the
Pu(x) are Legendre polynomials, Hermice polynomials, and Laguetre poly-
noamials, all of which make theit appearance in quantum mechapical problems,
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Since the delta function always appears multiplied by a smooth function
under an inregral sign, we can give meaning to its derivatives. For example

L A9 - ) = f s Lt wen - [ s o

_ [ R
——]_.dx i §(x)

- (g_);-o (A-30)

and so on. The delta function is an extremely useful tool, and the student will
encounter it in every part of mathematical physics.
The incegral of 4 delta functicn is

f‘dyﬁ(y—a)=0 x < @

=1 x>a {A-31)
= 0x — a)
which is the standard notation for this discontinuous function. Conversely, the -

detivative of the so-called step fimction is the Dirac delra function:

-:: b — ) =38x—a) (A-32)




appendix B

Operators

In chis appendix we discuss some topics related to linear operavors. The
ser of admissible wave packets ate square integrable funcrions. Since

$(x) = (o} + Balx) (B-1)
is square integrable, if §1(x) and 4%} are square integrable and o f are arbitrary
complex numbers, we say that the ¢s form a ffmear space. An operator A on this
space is a mapping:

M%) = $(x) (B-2)

where @(x} is also square integrable. Among all the operators there is 2 subset
called Jinear eperasors, which have the property that

Aoffx) = aAyx) | (B-3)
where a is an arbitrary complex constant, and
Alafn(x) + Bla(x)] = adbi(x) + BAbe(x)- (B-4)

with o8 being complex numbers. A further subset is the hermisian operators for
which the expectation value for all admissible ¥(x),

(A = f Al (x) M) ' (B-5)
is real. First we prove that for all admissible ¢a and v

_ f Y2l Ap(x) dx = f [Aa()]* Pula) dx (B-6)

holds.
‘The reality of {A) implies chat

f Bod () A = f de LAY]* ) ®7)

4495
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Now substizute for {x)
${x) = dalx) + Walx) (B-8)
This implies that

f dx(dy + NM2) AW + M) = f dx(gy + Ms) (B + M) (B9)
Usiag hermiricity, that is,
f ol M = f dop( APt P= 12 (B-10)
we obtain
A f Vadds + X f $dds = X f AGI O B f Yl g (B-11)

Since X is an arbitrary complex numbet, the selations for the coefficient of A and
for the coefficient of A* must separately hold. Thus

f deppdtn = f A e B12)

The next result that we wish to prove is that eigenfunctions of & hermitian
operater corresponding to different eigenvalues are orthogonal. Consider the two
equations

Apalx) = awnlx)
and

[AP()]* = asdalx) (B-13)

Note that 4 is real since the eigenvalues of a hermitian operator are rezl. Take
the scalar product of the first equation with ¥s and the second equation with ya.
Thus

f Dl AN ) = a1 f VA) dal)

f (A} dnlx) = 4 f VYalx) ¥ulx) dx (B-14)
Subtracting, we get _
(o= ) Vi v e = [ i~ [ taen v

=0 (B-15)
Thus, if &y 7 a, we have

j Vi) Yalr) e = © (B-16)
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If we define the hermitian conjugate of the opetator A by AT, so chat

[aiaga = [ s (B17)
then far a hermitian operator
A=A (B-18)
We can prove that
(AB) = Bt A" (B-19)

To do s0, we note that

" f Y AB) ¢ = f (ABY2)Y ¢

f (Bya)* (A}
f #:BY(A'W)
f ¥oBM A (B-20)
A genemﬁmtion of this is '
{ABC ... Zyt = Zt ... QB'AT (B-21)
Thus, 2 product of two hermitian opetators is only hetmitian if the two operators
commute:
{ABY! = B'A' = B4 = AB + [B,A] (B-22)
Anorther result is that for any opetator A, the following
A4+ A
€A — A (B-23)
A4
will be hermitizn. _
Next we prove the “uncertainty relations.” We define
(AA)t = () — (AP = {(d — {4})}") (B-24)
Let
o U=4-— {4

V=258- (B (B-25)
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and consider

&= I + APy
Then

100 = [dre >0
With A and B hermitian, sa are [fand /., We may thus rewrite:
109 = [ e + Ay @ + 270
= [axtonr w +x [ axvor w0
+ o [ adwor 49 - owr @)
= fM*({F + M A ANUV]) ¥

= {AA)! + M{AB) + A fdx#" [tvle >0
= (AA4)? + WHAB): + ix {{AB])

The minimum will‘ occur when
AAB)? + FAB]) = 0

Substituting the solution

Q4B
A= :2 (AB)!
into 1)), we gec
a8l | {4,817

(@dy ~ +

4{AR)® (a8
thar is,
aAy (ABy > | ({4,B]

(B-26)

(B-27)

(B-28)

(B-29}

(B-30)

(B-31}

Incidentally, the minimum value occurs when  is such that Uy and 1 are
proporcicnal to each other, For the case of the operators x and p, this means thar

u d"’{”) + iBapl) =

whose solution 13
Wx) = CeP¥™

(B-32)

(B-33}
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a ground state eigenfunction of the hatmonic oscillator, It is important ta note
that the uncerreinty relation

a4y (aBy > § (G[4,B]))® (B-34)

was derived without any use of wave concepts or the reciprocity between & wave
form and its fourier transform, The resules depends ennre.ly on the operator
properties of the observables A amd B.

We conclade the appendix by listing some properties of commutators.

@

[4,8] = — [B.A] (B-35)
(ii)
{AB]' = (4B)' — (BAY
= B'A'— AR
= [B"41 (B-36)

(iii} If A and B are hermitian, so is 44,8). This follows ditectly from the

preceding properties.
(iv}

[AB,C] = ABC — CAB
= ABC — ACB + ACB — CAB
= ABC]+ [4C] B (B-37)
(v) It may be shown term by term that

eABe4 = B+ (4,8 + Zil [4[4,B]] + % [AlA14B]] + ... (B38)

This is known as the Baker-Hazusdorff lemma, and is of some utility in manipula-
tions of operators.
{vi} It is easily established that

[448,C1] + [BIC, AN + [cla.B]} = o (B-39)

This is called the Jacobi identity,

A more extensive discussion of operatots and the linear spaces that they are
defined on may be found in J. D. Jackson, Mathematics for Quantum
Mechanics, W. A. Banjamin, Inc., New York (1962).
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ph]sical constants’

N (Avogadro’s number)
¢ {velocirty of light)

6.022169(40) X 10°? mole?
2.9979250(10) X 10 cm sec-!

e {electron charge) = 4.803250(21) 3 10" esy
= 1.6021917(70) % 107* coulomb
1 MeV = 1.6021917(70) X 10~* erg

6.382183(22) X 1072 MeV sec
1.0545919(80) X 107 etg sec
1/137.03602{21)

1.380622(59) X 101 erg K-
9.109358{54) X 107" gm
0.5110041(16) MeV/:*
938.2592(52) MeV /¢t

#i (Planck constant/2x)

a (Anc structure constant £2/%c)
£ {Boltzmann constant)
m, (electron mass)

i

m, (proton mass)

) ity = 1836.109(11)

1 amue (1/12 X men) = 931.4812(52) MeV/¢?

@ = (i/mia) = 0.52917715(81) X 10~% cm

R, {(=msle?/2) = 13.605826(43) eV = 1 Rydberg

It

G (gravitational copstant) 6.6732(31) X 107F em® gm! sec®

ek
BBohe (Boht magneton) = = 0.5788381{18) X 107 MeV gauss
et

' Compiled by Stanley J. Brodsky, as presested in Revivws of Modera Plysics, 4£5,(2),
Part II. The figures in parentheses comespond to che smrstical uncerainty {one standard
devietiony in the kest digirs of the majn aumber,
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Absorption, of radiaton in matter, 409
i scattering, 384
Absorptivity, 1
Addition, of angular momenta, 243
of spin and orbital angular momenium,
246
of two spins, 243
Adiabatic theorem {problem), 361
Aharancv-Bohm cffect, 222
Alpha decay, 89
Angular momentum, 167
sommutation relstions, 159, 232
condition in Bohr atom, LS
canservation, 158
eigenfunctions, 175
eigenvalue preblem, 162, 171
matrices, 229
Analog states, 431 )
Annihilation of antiprotons, 428
Antibaryons, 427
Antiparticles, 423
Associated production, 438
Atomic structure, 299
shell structuze, 303
periodic table, 307
Autoionization, 295
Averaging over initlal states, 357, 360, 374

Band stracture, 100
Batrier penetration, 85, 471
Baryon nuniber, 428
Bessel fanctions, 225
spherical, 182
Beta decay, 450
Black body radiation, 1
energy density, 2, 5, 315
Black dise scattering, 385
Bohr atomic model, 14
Boht otbits, 18, 36, 39
Bohs comespondence principle, 19
Bolizmann factor, 375
Boltzrann probability distribution, 6, 322
Bond nember, 333
Bom spproximation, 397

for Cqulomb scaitering, 399
limitations, 400
Born-Oppenheimer approximation, 314
Born probability interpretation, 46
Bose Einstain statistics, 148
Basons, 148
Bound stales in potential well, 80, 185
Box potential, 60, 151, 162, 187
Bragg conditions, 13, 100, 404
Breit-Wigner formula, 392
Bremsstrahlong, 419
Building-up principle, 303

Center of mass motion, 145, 156
Ciccular orhits in hydrogen atont, 200
Classical limit, equations of motion, 120
motien of electron in magnetic field, 217
Classification of molecular orbitals, 321
Coherent scattering by crystal, 403
Cold esmission, 87
Collision braadening of spectral lines, 366
Collison theory, 379
Commutation relations, 439
for p and x, 51, 141
for angular momentum, 159, 171
Completa set of commuting observables,
119
Complete set of eigenfunctions, 65, 114,
117, 131
Compton effect, 10
Klzin-Nishina formula, 417
role in ghsorption of radiation, 416
Cempton, wavelength, L2
Conséervation, of angular momentum, 158
of momentam, 142
of parity, 67, 450 .
of probability, 47
Constant of the motion, 67, 121
Correspondence principle, 19
elactron motion in magnetic field, 216
intensity of dipole radiation, 358
nennalization of vector potential, 344
Cross section, differential, 380
with absorption, 384
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for black disc, 285
for identical particles, 402
optical theorem, 384
photoelectric effect, 413
relztivistic invariance, 463
in terms of boond state energy, 394
in terms of phase shifts, 383
total, 385
total elastic, 383
Cylindrical coordingtes, 215

Devisson-Germer diffraction experiment, 3
De Broglie wavelengih relation, 13
Debye frisquency, 371
Degeneracy, 70, 375
for central potentials, 176
for Coulomb potential, 198
lifting in atoms, 302
Degenerate cigenfunciions, 118
Degenerate perturbation theory, 258
Stark effect, 263
in enatrix language, 265
Delta function potential, 77, 93
Deentity of stales, see Phase space
Detailed balance principle, 375
Dicke-Wiltke cage, 21, 170
Differential operators for angular mo-
mentom, 168
Differential scattering cross section, 380,
382,399
Dirac Delta function, 68, 491
Dirac notation, 113
Dispersion, 119
Doppler broadening, 367
Double dit experiment 20, 35
Dulong-Pztit law of specific heats, &

Effective range formula, 394
Ehrenfest theorer of classical limit, 122
Eigemfunctiong, 59

orthogonality, 496
Figenvalue, 59
Eigenvalue ¢guation, 58

for infinite box, 60

for Lz, 169

in matyix form, 231
Einstein equivalence principle, 37, 466
Einstein model of lattice, 371
Einstein phatoslectric effect formula, 7
Electric dipole moment, 260, 338
Flectric dipole approximation, 352

selection rules, 354

{ransition rate for 2P —+ 18, 357
Elecitic quadrupole transitions, 354
Electron in constant magnetic field,

Schrodinger equation in cylindrical
coordinates, 215

coqtdinates, 215,

classical motion, 217

carrespondence Limit, 218
Electromagnetic encrgy density, 344
Elementary particles, 423
Emissive power, |
Energy opetator, fe2 Hamiltonian
Energy shift, first order, 256

helium ground state, 286

hetium excited states, 289

second ordex, 287, 477
Eotvos experiments, sze Einstein squivalence

principle

Equilibrinn congitions in cavity, 374
Equipartition of energy, 4
Equivalence principle, see Einstein
Exchange effect in helium, 289
Exchange operator, 147
Expatsion postulate, 62, 112
Expectation vaiues, 48

for #¥ in hydrogen, 206
Exponential decay rate, 365, 477

Fermi-Dirac statistics, 148
Fermi energy, 87, 152, 163
Fermions, 148
Feynman—Hellmann theorem (probiem),
297
Fine structure constant, 17
Flux, 47, 70, 183
Flax conservation in radial equation, 184
Fourwvectots, 461
Fourier integral, 27, 430
Fourier sexies, 489
Fowler-Nordheim forrouda, 87
Free particles, 67
Schrodinger equation, 45
radial equation, 181

Gange invariance of Schodinger equation,
218

Gange transformations, 210

Gedankenexperiment, 20

Gell-Mann-Ne'eman unitary symmetry, 442

Gell-Mann-Nishijima stranpeness theory, 439

GelFMann-Okubo mass formula, 449

Gelt-Marm-Pais prediction of K, , 454

Gell-Mann-Zweig quark model, 446

Golden Rule for trmgition rate, 350

Cravitationz) deflection of light, 467

Gravitastional frequency shift, 37, 373, 4687

Ground state, &1, 130

Group velocity, 31

Gyromagnetic ratio for electron, 235

Hamiltonian, 53




for atom, 299

for electron in external field, 211, 342
Harmonic oscillator, 101, 127

operator methods, 127

eigenfunctions, 133

matrix forn, 228
Hartree scli-consistent method, 300
Heisenberg uncectamty relations, 33, 36,

120
Heisenberg picture, 135
Heistnberg explanation of ferromagnetism,
29

Heitles-London method for molecules, 329
Helium atomn, 283, 303

exchange interaction, 289

fitst order Jevel shifts, 286

inflaence of spin, 286, 289
Hermitian conjugate operatar, 115
Hemmitian operatoss, $2, 114, 495
Hund’s Rules, 291, 304
Hybrid orbitals, 336
Hydrogen atom, Bohr model, 12

radial equation, 195

celativistic effects, 371

spectrum, 197

spin-orbit coupling, 274
Hydrogen molecule, 316, 323, 327
Hypercharge, 441
Hypedfine structure, 277

Idéntical particles, 146, 250
scattering, 401
Induced absorpiion and emission, 373
Inclastic collisions, 384
Infioite box, ree Particle in box
Intensity of spectral lines in moleculss, 321
Intensity of dipole radiation, 353
Intensity and spin, 358
Intarnal conversion {problem), 362
Interpretation of wave function, 46
Interpretation of expansion cocfficients, 64,
113
Invariance under discrete displacements, 89
displacemeants, 143
particke-antiparticte conjuga tion, 425
rotations, 157
:reﬂecﬂrms. see Parity
Isctopic spin, 429
consetvation, 434
mulliplets, 431

K" —K* system, 454

regencration, 455
Kirchhoff laws of thermal radiation, 1, 2
Kronig-Fenney madel, 98

Index 511

Lagrange multiplier in vatiational principle,
300

Lagnetre polynomials, 199 )
Lambda parcicle discovery, 436
Larmor frequency, 213
Laser, 376
Lea-Yang on parity noncomservation, 451
Legendre polynomials, 175, 176, 206
Levinson theotem, 333
Lifetime, 365,473
Line width, 366, 478

collizsion broadening, 366

Doppler tucadening, 367

recoil shift, 368
Linear operators, 58, 114, 425
Lorentz force, 211, 223
Lorentz invafants, 451
Lorentzian line shape, 366, 478,

Magk: numbers, 188
Magneiic dipole raoment, 235
of spin, 235
Magnetic dipole transithons, 155
Magnetic flux quantization, 220
Mass absogption cocfficient, 415
Mass formula for baryoens and mesons, 449
Matrices, 229
Matrix preduets, 228
Mairix representation of aperators, 229, 230
Maxwell’s equations, 209
Mean free path, 411
Meissner effect, 221
Meson theory of nuclear forces, see Yokawa
Miller indices of Bragg planes, 405
Molecules, 313
clagsification of staves, 321
electronic encigies, 316
orbitals, 328, 332
vne-dimensional madel, 93
specific heats, 322
structure, 327
types of motion, 314
Momentum operaior, 49, 142
henmiticity, 52
eigenfunctions, 67
Momentum conservation, 142, 143
of photan, 10
space wave function, 50
Mossbauer effect, 368

AN-particle system, §41
Hamiltonian, 141

Keutring, 450

Neutron-proton scatlering, 395
potential spin dependence, 396



512 index

Normalization of momentum eigen-
functions, 68

Nosmglization of eigenfunctions, 112

Nodes-connection with energy, 62

Nucleon sotopic spin, 430

Observables, 119
Oyperators, 31, 58
hermitian, 52, 495
Tnenr, 58, 495
raising and lowering, 130, 171
mathods for eigenvalue problems, 127
Ogpiical, theorem, 384
Orbitals, 231, 328 !
Octhanormality conditions, 61, 112, 496
Orthohetiom, 262
Overlap integral, 318

Pzir production, 418
showers, 419
Paired electzons and bonding, 331
Pais proposal of assocfated production, 438
Fais-Piccioni regeneration experiment, 455
Parahelium, 292
Peramagmetic resonance, 237
Parity, 65,67
noaconsexvation in weak interactions,
450, 453
of pion, 251
selection rules, 354
Parseval's theorem, 50
Partial wave scattering amplitude, 381, 384
Particle in box, 60
eigensolutions, 61
in three dimensions, 162, 187
Pauli axchusion principle, 144, 150
Pauli principle, effect on molecalar speciral
intensities, 321
and isotopic spin, 430 :
and two-spinor states, 250, 251
Pauli spin matrices, 232
Penétration of wave functions, 78
Periodic wave functions, 52, 99, 348
Periodic potentials, 98
Periodic table, 307
Permanent dipole moment, 260
Perturbation theoty, calculation of nuclear
force fiom meson exchangs, 483
Perturbation theory, convergence, 266
degenerate, 258
first order shift, 256
second order shift, 257, 477
second order matrix clement, 417
time dependent, 341
time independent, 255
Phase shift for radial solution, 184

at resanance, 389
for square well, 189, 389
at threshald, 389
Phase shift expanslon of scattering amplitude,
333, 358 )
Phase space, 348
for many partick state, 350
Phase of wave function, 46
Phonons, 372
Photons, 10
Photon momentunt, 10
absorption and emission, 342, 345
Photodisintegration of deuteron, 353
Photoelectric effect, 8
angular dependence 415
cross section, 413
emevgy dependence, 414
matrix ¢kment, 410
Fions (piHmesons), 251, 428, 485
Manck constant, 5, 16
Panck radiation formula, 5
derivation, 373 _
Mane wave expressed in spherical harmouics,
191
Polarizability, 262
Polarization of photon, 345
sumined over, 357
Population inversion, 377
Position operator, 133
eigenstates, and the interpretation of wave
function, 133
Positron, 417, 423
Pogitroninm, 425
annthilation rate, 426
charge corjugation, 426
Potential barrier, 84
Poizntial scatiering and phase shift, 184,
189, 380, 389, 39)
Potential scattening in Born approximation,
397,401
Potential step, 75
Potential well, 78
bound states, 80
odd parity bound state conditions, 83
Precession of spin, 235
Probability conservation, 47
Probabitity interpretation of wave function,
48

Probability interpretation of expansion co-

cfficients, 64; see Expansion postulate
Propegatian of wave packets, 30

Quantization of angular momentum, 15, 17,
22

Quantization of electromagnetic field, 343
Cuantum of radiation, 7




Quantum alectrodynamic foem of vectar
potential, 345
Quark madel, 446
composition of mesons, 447
composition of bacyons, 448
mass splittings, 442

Radial equation, 161, 176, 179
regular and irregatar solutions, 180
ASYmptotic solution, 134
" sahution for hydrogen, 199
plots of sclutions, 201-205
Radiation of atoms, 341
Radiation length, 419
Radiative transitions, matrix element, 351
2P — LS rate, 366
‘Ralsing operators, 131, 171
Ramsaver-Townsend effect, 80
Range of nuclear forces and meson mass,
484
Rare earths, 306
Rayleigh-Yeans black body radiation law, 4
Reality of expectation values, 52
Recoilless emission (Mossbaver effect), 369
Reduced mazs, 145, 157
effect on spectrum, 197
Reflection by potential step, 76
Relativistic corractions to hydrogen
specirum, 271
Relativistic kinematics, 461
Relatlvistic transformation between lab and
center of mass frames, 452
Resomance emcrgy, relation to position of
energy levels, 300
Resonant scattering, 989
Breit-Wigner formula, 392
Resonant states in Helium, 295; see piso
Autoionization
Resonant states in particle physics, 432
Riemann-Lesbegue lempma, 382
Ritz variational principle, 292, 299, 318
Rotational motion of molecules, 316
Rotational states and the Pauli principle,
31
Rotatar, sigenvalue equation, 17¢
with identical particles, 170
Rufherford, planetary model, 14
c10ss section for Coulomb scattering, 400

S wave scattering, 392
relation befween amplitude and bound
state position, 393
Scalar product, 113
Scattering by crystal, 403
Scattering of identical particles, 401
Scatrering length, 304, 396

Index 513

Scatte&lgng WatriX in one dimension {problem),
1
Scattering, spin dependence, 305
Schrodinger equation, 32
[ee particle, 45
cylindrical coordinates, 215
initial conditions, 45
for N particles, 141
patticle in potential, 53
separation of cemter of mass motion, 153
wepatation of angufar coordinates, 161
separation of time dependence, 57
in three dimensions, 155
time dependent, 57
time independent, 57
Schrodinget pictore, 135
Schwariz inequality (peoblem), 123
Screened Coulamb potential, 399
Screening of nuclear charge, 289, 292
Selection rules, 261, 309
for orbital angular momentum, 353
for parity change, 354
for spin change, 354
for zcompomant of angular momenium,
353
role in Zeeman effect, 213
Zero-zero tiensitions, 356
Shedow scattering, 386
Shell model of nucleus, 188
Simultaneous cigenfunctions, 65, 71, 117
conditions on operators, 119
Singlet state, behavior under particle ex-
change, 250
Slater detciminant, 149, 302
Bommerfeld-Wilson quantization rule, 19
Specific heats of malacules, 322
vibrational effects, 324
Spectrum of hydrogen, 17, 197
modifications, 274
Spectrem of helivm, 285
Spectrum of momentum pperator, 63
Spectrum in particle physics, 439
Spherical Bessel functions, 182
zer05, 187
Sphesical Hankel functions, 182
Spherical harmonies, 175
Spherical symmetry of closed sheils, 303

. Sphericat waves, 183

incoming and outgoing flux, 184, 380
Spin % operators, 232
Spin component expectation values, 235
pin-dependence of seattering lengths, 356
Spin-dependent potentials, 246, 395, 401
Spin-dependance of hehium spectrum, 250
Spin3§.lp in deuteron photedisin tegration,
5



sS4 Index
Spin and Intensity roles, 358
Spin matricas, 232
Spin-orbit conpling, 272,304
Spin singlet wave functions, 244
Spin precession in magnetic feld, 236
Spin-statistics connection, 148
Spin triplet wave function, 244
Spinors, 232
Spreading of wave packet, 31
Square well, 78
bound states, 185
deep potential limit, 186
resonant scattering, 390
S wava, 186, 392
in three dimensions, 188, 18%
Square integrable functions, 48, 111
Stark effect, 259
convergenes of perturbation series, 266
for n = 2 states, 263
and parity, 260
second arder, 261
Stefan-Boltzmamm law, 6
Strange particle production and decays, 437
Strangeness, 436, 440
Sum rules, 263, 268
Superconducting gap, 8%
Superposition of waves, see Wave packets
Symmetry of Hamiltonian, 66

Thomas precession effect, 272

Thomas-Reiche-Kuhn sum role (problem),
28

Time deperad of expectation values, 120

Time depemience of operators, 135

Time dependence of wave fonctions, 53

Time development of systems, 134

Time development of decaying state, 473

Time-encrgy uncertainty relation, 38, 366

Transition rate, 347

relation to Hfetime, 365

Tranamission coefficlent for square well,
14

Transmission coeffickent in WKB approxi-
mation, 86

Triplet state, behavior under particle ex-
change, 250

Tunneling, 83, 36

Two-particle system, 144

Two-glit experiment, 20, 34

Uncertainty telations, 33, 61
dispersion, 119
ure for estimates, 39
general proof, 497
in infinite box, 62
nucdear Tecail in Mossbauer effect, 372
shadow scattering, 386
Unitary symmetiy, 442
octets and decuplets, 443
discavery of 017, 444

Valence bonds, 329
Variational principle, for atoms, 299
for hellum, 292
for molscules, 318, 328
Vector potential, 209
for constant magnetic fisld, 211
Vector potential fot emission and absorplion
of photons, 343
Veotor spaces, 113 .
Virial theorem (problem), 208

Water malecule, 336, 337
Wave equation, see Schrodinger equation
Wave mechanics, general structurs, 111
Wave packets, 27, 69

gaussian, 28

Tunitations on width, 28

and noo-normalizeble states, 69

propagation, 30

in scattering, 379

spreading, 31
Wave-particle duality, 20
Wentzel-KramersBrillonin (WKB} approxi-

mation, 85, 469

Wien law for black body rediation, 2
Work Function, 8, 87

Yukewa theoty of nuclear forces, 35, 431
Yukawa form of nuckear potential, 484

Zeeman effect, normal, 213
anomalous, 275
for strong fields, 277

Zero-point encigy, 103

Zerg-rero fransition selectlon rule, 356




