Introduction à la mécanique quantique Sujet de rattrapage 2 (durée 2 heures)

CONSIGNES:

- L'USAGE DE LA CALCULATRICE EST AUTORISÉ.
- AUCUN DOCUMENT N'EST ADMIS.

Interférences

On considère un écran percé de deux fentes. On tire au travers des fentes au moyen d'un faisceau de particules monocinétiques ou d'un faisceau de lumière monochromatique. On s'intéresse à l'intensité collectée sur un autre écran opaque situé en aval du système de fentes.

- 1. Représenter le profil d'intensité obtenu en fonction de la position sur l'écran si la source produit (a) un jet d'eau, (b) une lumière verte, (c) des neutrons.
- 2. Quels phénomènes sont mis en évidence par cette expérience?
- 3. Dans le cas de la lumière, on réduit très fortement l'intensité de la source. Que se passe-t-il alors en fonction du temps d'acquisition? Quelle(s) conclusion(s) peut-on en tirer?

Quantification de l'énergie de l'électron dans l'atome d'hydrogène

Pour l'atome d'hydrogène, le modèle développé par N. Bohr conduit à l'expression suivante pour l'énergie de l'électron :

 $E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2 n^2} = -\frac{E_0}{n^2}$

où n est un nombre entier strictement positif.

- 1. Quelles sont les hypothèses de Bohr permettant d'aboutir à cette formule? Quelle est la signification physique fondamentale de cette équation?
- 2. Calculer E_0 en joule et en électron-volt.
- 3. Établir l'expression de la longueur d'onde de la lumière absorbée ou émise lors d'une transition de l'électron entre deux niveaux quelconques n_1 et n_2 , en fonction de E_0 , h et c.
- 4. Une raie du spectre d'émission de l'atome d'hydrogène a pour longueur d'onde 486,2 nm. À quel domaine spectral appartient cette radiation? On rappelle que cette radiation appartient à la série de Balmer et que toutes les transitions associées à cette série ont pour niveau d'arrivée n=2. En déduire le niveau de départ n_i de l'électron et représenter la transition sur un schéma d'énergie à l'échelle.
- 5. Quelle devrait être la vitesse d'un électron libre pour engendrer, par collision, une transition de l'électron de l'atome d'hydrogène du niveau fondamental vers le premier niveau excité? Est-ce réalisable physiquement?

Fonctions d'onde dans un puits de potentiel unidimensionnel

On considère le puits de potentiel unidimensionnel infiniment profond et de largeur L suivant :

$$V(x) = \begin{cases} 0 & \forall x \in [0; L] \\ \infty & \text{ailleurs} \end{cases}$$

On s'intéresse à la forme des fonctions d'ondes stationnaires $\Phi(x)$ permises pour des particules quantiques d'énergie $E \geq 0$ piégées dans le puits.

- 1. Écrire l'équation de Schrödinger stationnaire 1D dont les fonctions d'onde $\Phi(x)$ sont les solutions. Quelles informations cette équation contient-elle?
- 2. Vérifier que toute fonction d'onde du type $\Phi_n(x) = C \sin(\frac{n\pi x}{L})$ où n est un nombre entier strictement positif et C une constante, est solution de l'équation de Schrödinger stationnaire. En déduire l'expression de l'énergie associée à chaque fonction d'onde.
- sachant que l'incertitude sur la position d'une particule est égale à la largeur L du puits, commenter le fait que l'énergie de l'état le plus bas ne soit pas nulle (ce serait le cas classiquement).
- 4. Sachant que l'énergie d'origine cinétique des particules est donnée par $E = \frac{\hbar^2 k^2}{2m}$, donner l'expression des nombres d'onde k_n permis. En déduire l'expression des longueurs d'onde permises.
- 5. Donner l'expression de la densité de probabilité de présence dP(x) de la particule.
- 6. Exprimer la condition de normalisation des fonctions d'onde. Montrer alors que les fonctions d'onde s'écrivent :

 $\Phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$

- 7. Représenter graphiquement $\Phi_n(x)$ et $|\Phi_n(x)|^2$ pour tout x réel pour n=1, 2 et 3. Comment appelle-t-on le niveau n=1? Même question pour le niveau n=3?
- 8. Déduire sans calcul de la question précédente la probabilité de présence d'une particule entre x=0 et $x=\frac{L}{3}$ si sa fonction d'onde associée est $\phi_2(x)$. Même question pour $\phi_3(x)$.
- 9. On modifie à présent la forme du puits de potentiel de telle sorte que la barrière située à l'abscisse x=L ne soit plus infinie mais égale à V_0 , $\forall x \in [L; +\infty]$. On considère que l'énergie de la particule est inférieure à V_0 . Les fonctions d'onde $\phi_n(x)$ doivent-elles toujours s'annuler en x=L? Sinon, comment évoluent-elles qualitativement pour $x \in [L; +\infty]$. Représenter alors l'allure générale des fonctions d'onde $\phi_1(x)$, $\phi_2(x)$ et $\phi_3(x)$ pour tout x réel.

Données numériques utiles :

– masse de l'électron : $m_e = 9,109 \times 10^{-31} \text{ kg}$

– constante de Planck : $h=6,626\times 10^{-34}~\mathrm{J.s}$

– célérité de la lumière : $c=2,998\times 10^8~\mathrm{m.s^{-1}}$

– charge de l'électron : $|e|=1,602\times 10^{-19}$ C

– permittivité du vide : $\epsilon_0=8,854\times 10^{-12} \mathrm{m}^{-3} \mathrm{kg}^{-1} \mathrm{s}^4 \mathrm{A}^2$

¹À toute fin utile, on rappelle les relations trigonométriques suivantes : $\cos(a+b) = \cos a \cos b - \sin a \sin b$; $\cos(a-b) = \cos a \cos b + \sin a \sin b$.