PART III

Implementing Inter-Network Relationships with BGP

Routing Protocols

Autonomous System

BGP-4

- BGP = Border Gateway Protocol
 - Is a <u>Policy-Based</u> routing protocol
 - Is the <u>de facto EGP</u> of today's global Internet
 - Relatively simple protocol, but configuration is complex and the entire world can see, and be impacted by, your mistakes.
 - 1989 : BGP-1 [RFC 1105]
 - Replacement for EGP (1984, RFC 904)
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771]
 - Support for Classless Interdomain Routing (CIDR)

Routing problems

YouTube outage underscores big Internet problem

BGP Operations (Simplified)

Two Types of BGP Neighbor Relationships

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto interdomain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and policy
- Allows subnet to advertise its existence to rest of Internet: "I am here"

BGP basics

- ❖ BGP session: two BGP routers ("peers") exchange BGP messages
 - Advertising *paths* to different destination network prefixes ("path vector" protocol)
 - Exchanged over semi-permanent TCP connections
 - When AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP Session

BGP "Managed Session" is used to

- 1) Distribute externally learned routes internally
- 2) Distribute routes to external destinations

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES;
 also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

announcement
=
prefix + attributes values

BGP FSM

Event/Action List

- 1 Request for Connection
- 2 Connection Succeeded
- 3 Connection Failed
- 4 "Open" Received
- 5 "KeepAlive" Received
- 6 "Update" Received
- 7 "Notification" Received
- 8 "Open" Sent
- 9 "KeepAlive" Sent
- 10 "Update" Sent
- 11 "Notification" Sent
- 12 Close connection
- 13 Any Error, including:

TCP operation error,

Packets format error,

Packets type error.

- 14 KeepAlive Timer Expire
- 15 KeepAlive Timer Reset
- 16 HoldOn Timer Reset
- 17 HoldOn Timer Expire

BGP basics: distributing path information

- Using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- When router learns of new prefix, it creates entry for prefix in its forwarding table

BGP routing policy

- ❖ A,B,C are provider networks
- ❖ X,W,Y are customer (of provider networks)
- * X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

BGP routing policy (2)

- ❖ A advertises path AW to B
- ❖ B advertises path BAW to X
- Should B advertise path BAW to C?

Path attributes & BGP routes

- Advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- Two important attributes
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS (may be multiple links from current AS to next-hop-AS)
- Gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

Attributes are Used to Select Best Routes

Given multiple routes to the same prefix, a BGP speaker must pick at most one best route

(Note: it could reject them all!)

BGP Route Processing

BGP Design

- Distance vector protocol
- Implements policies
 - to enable politics and traffic engineering
- Decision process (in each router):

Route Selection Summary

Highest Local Preference Enforce relationships

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

Lowest IGP cost

Traffic engineering

Lowest router ID

Throw up hands and break ties

BGP Next Hop Attribute

Every time a route announcement crosses an AS boundary, the Next Hop attribute is changed to the IP address of the border router that announced the route.

Join EGP with IGP For Connectivity

LOCAL PREFERENCE

ASPATH Attribute AS 1129 135.207.0.0/16 AS Path = 1755 1239 7018 6341 **Global Access AS 1755** 135.207.0.0/16 135.207.0.0/16 **AS Path = 1239 7018 6341 Ebone** AS Path = 1129 1755 1239 7018 6341 **AS 12654 AS 1239 RIPE NCC** 135.207.0.0/16 **RIS** project **AS Path = 7018 6341 Sprint** 135.207.0.0/16 **AS7018** AS Path = 3549 7018 6341 135.207.0.0/16 **AS Path = 6341** AT&T **AS 3549 AS 6341** 135.207.0.0/16 **AT&T Research Global Crossing AS Path = 7018 6341** 135.207.0.0/16 28 **Prefix Originated**

Shorter Doesn't Always Mean Shorter

Interdomain Loop Prevention

Traffic Often Follows ASPATH

IP Packet
Dest =
135.207.44.66

... But It Might Not

AS Graphs Depend on Point of View

Implementing Backup Links with Local Preference (Outbound Traffic)

Forces outbound traffic to take primary link, unless link is down

We'll talk about <u>inbound</u> traffic soon ...

Why different Intra- and Inter-AS routing?

Policy

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed

Performance

- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

Import Routes

Export Routes

Basic BGP commands

Basic Commands

- router bgp <as-number>
- neighbor <ip address> remote-as <as-number>
- Examples
 - router bgp 400
 - neighbor 120.5.1.1 remote-as 300
 - neighbor 5.5.5.3 remote-as 3
 - network 2.2.2.0 mask 255.255.255.0

show commands

- show ip bgp
- show ip bgp neighbors

Protocoles et Interconnexions

Course Overview and Introduction

Dario Vieira

Department of Computer Science

EFREI