
Protocoles et Interconnexions

Course Overview and Introduction
Dario Vieira

Department of Computer Science

EFREI

Routing Protocol

B
G

P

TCP

Computer Networking

Preliminaries

Transport Layer

Network Layer

Link Layer

Physical Layer Transmission media

Ethernet

Routing

Internet protocol

TCP

UDP

Terminology

Introduction

Aplication Layer, advanced topics (e.g., wirelless, P2P,

Multimedia, security, and management
Other

 Topics

Transport Layer 3-4

Chapter 3

Transport Layer

Computer Networking: A

Top Down Approach

5th edition.

Jim Kurose, Keith Ross

Addison-Wesley, April

2009.

Transport Layer 3-5

Chapter 3: Transport Layer

 Our Goals

Learn about transport layer protocols

in the Internet
• UDP: connectionless transport

• TCP: connection-oriented transport

Application

Transport

Network

Link

Physical

Transport

Transport Layer 3-6

Transport services and protocols

 Transport protocols run in end

systems

– send side: breaks app

messages into segments,

passes to network layer

– rcv side: reassembles

segments into messages,

passes to app layer

 More than one transport

protocol available to apps

– Internet: TCP and UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

Transport Layer 3-7

Transport vs. Network layer

 Network layer

– Logical communication

between hosts

 Transport layer

– Logical communication

between processes

– Relies on, enhances,

network layer services

application

transport

network

data link

physical

application

transport

network

data link

physical

Transport Layer 3-8

Internet Transport-layer Protocols

 Reliable, in-order delivery

(TCP)

– congestion control

– flow control

– connection setup

 Unreliable, unordered

delivery (UDP)

– no-frills extension of “best-effort” IP

 Services not available

– delay guarantees

– bandwidth guarantees

application

transport

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

application

transport

network

data link

physical

Transport Layer
3-9

Chapter 3 outline

3.1 Transport-layer services

3.2 Connectionless Transport: UDP

3.3 Principles of reliable data transfer

3.4 Connection-oriented transport: TCP

3.5 Principles of congestion control

3.6 TCP congestion control

Transport Layer 3-10

UDP: User Datagram Protocol [RFC 768]

 “No frills,” “bare bones”

Internet transport protocol

 “Best effort” service, UDP

segments may be:

– lost

– delivered out of order to

app

 Connectionless

– No handshaking between

UDP sender, receiver

– Each UDP segment

handled independently of

others

Why is there a UDP?

 No connection establishment

(which can add delay)

 Simple: no connection state

at sender, receiver

 Small segment header

 No congestion control: UDP

can blast away as fast as

desired

Transport Layer 3-11

UDP: more

 Often used for

streaming multimedia

apps

– loss tolerant

– rate sensitive

 Other UDP uses

– DNS

– SNMP

 Reliable transfer over

UDP: add reliability at

application layer

– application-specific error

recovery!

source port # dest port #

32 bits

Application

data

(message)

UDP segment format

length checksum

Length, in

bytes of UDP

segment,

including

header

Transport Layer
3-12

Chapter 3 outline

3.1 Transport-layer services

3.2 Connectionless Transport: UDP

3.3 Principles of reliable data transfer

3.4 Connection-oriented transport: TCP

3.5 Principles of congestion control

3.6 TCP congestion control

Transport Layer 3-13

Principles of Reliable Data Transfer

 Important in app., transport, link layers

– top-10 list of important networking topics!

Transport Layer
3-14

Principles of Reliable Data Transfer

 Characteristics of unreliable channel will determine complexity

of reliable data transfer protocol

 Important in app., transport, link layers

– top-10 list of important networking topics!

Transport Layer 3-15

Principles of Reliable Data Transfer

 Characteristics of unreliable channel will determine complexity

of reliable data transfer protocol (rdt)

 Important in app., transport, link layers

– top-10 list of important networking topics!

Transport Layer 3-16

Reliable Data Transfer: Getting Started

send

side

receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

Transport Layer 3-17

Reliable Data Transfer: Getting Started

 Incrementally develop sender, receiver sides of

Reliable Data Transfer protocol (rdt)

 Consider only unidirectional data transfer

– but control info will flow on both directions!

 Use Finite State Machines (FSM) to specify

sender, receiver

State 1 State 2

event causing state transition

actions taken on state transition

state: when in this

“state” next state

uniquely

determined by next

event

event

actions

Transport Layer 3-18

Rdt1.0: Reliable Transfer over a Reliable Channel

 Underlying channel perfectly reliable

– no bit errors

– no loss of packets

 Separate FSMs for sender, receiver

– sender sends data into underlying channel

– receiver read data from underlying channel

Wait for

call from

above
packet =make_pkt(data)

udt_send(packet)

rdt_send(data)
Extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-19

Rdt2.0: channel with bit errors

 Underlying channel may flip bits in packet

– checksum to detect bit errors

 The question: how to recover from errors?

– acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK

– negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors

– sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):

– error detection

– receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”

during conversation?

Transport Layer
3-20

Rdt2.0: channel with bit errors

 Underlying channel may flip bits in packet

– checksum to detect bit errors

 The question: how to recover from errors?

– acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK

– negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors

– sender retransmits pkt on receipt of NAK

 New mechanisms in rdt2.0 (beyond rdt1.0):

– error detection

– receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-21

rdt2.0: FSM specification

Wait for call

from above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK Wait for call

from below

Sender

Receiver

rdt_send(data)

L

3-22

TCP: Overview

 Full duplex data:

– bi-directional data flow in

same connection

– MSS: maximum segment

size

 Connection-oriented:

– handshaking (exchange

of control msgs) inits

sender, receiver state

before data exchange

 Flow controlled:

– sender will not overwhelm

receiver

 Point-to-point:

– one sender, one receiver

 Reliable, in-order byte

steam:

– no “message boundaries”

 Pipelined:

– TCP congestion and flow

control set window size

 Send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-23

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head

len

not

used

Options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-24

TCP seq. #’s and ACKs

Seq. #’s:

– byte stream “number” of

first byte in segment’s

data

ACKs:

– seq # of next byte

expected from other side

– cumulative ACK

Q: how receiver handles out-of-

order segments

– A: TCP spec doesn’t say,

- up to implementor

Host A Host B

User

types

‘C’

host ACKs

receipt

of echoed

‘C’

host ACKs

receipt of

‘C’, echoes

back ‘C’

time

simple telnet scenario

Transport Layer 3-25

TCP: Retransmission Scenarios

Host A

time
premature timeout

Host B

S
eq

=
9

2
 t

im
eo

u
t

Host A

loss

ti
m

eo
u
t

lost ACK scenario

Host B

X

time
S

eq
=

9
2

 t
im

eo
u

t

SendBase

= 100

SendBase

= 120

SendBase

= 120

SendBase

= 100

Transport Layer 3-26

TCP Retransmission Scenarios (more)

Host A

loss
ti

m
eo

u
t

Cumulative ACK scenario

Host B

X

time

SendBase

= 120

TCP Congestion Control

(a) A fast network feeding a low capacity receiver.

(b) A slow network feeding a high-capacity receiver.

Transport Layer 3-28

TCP Connection Management

Recall: TCP sender, receiver

establish “connection” before

exchanging data segments

 initialize TCP variables:

– Initial seq. #s

– Buffers, flow control info
(e.g. RcvWindow)

 client: connection initiator

 Socket clientSocket = new

Socket("hostname","port

number");

 server: contacted by client

 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP

SYN segment to server

– specifies initial seq #

– no data

Step 2: server host receives SYN,

replies with SYNACK segment

– server allocates buffers

– specifies server initial seq. #

Step 3: client receives SYNACK,

replies with ACK segment,

which may contain data

Transport Layer 3-29

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system

sends TCP FIN control

segment to server

Step 2: server receives FIN,

replies with ACK.

client server

close

close

closed

ti
m

ed
 w

ai
t

Transport Layer 3-30

TCP Connection Management (cont.)

Step 3: client receives FIN,

replies with ACK.

– Enters “timed wait” - will

respond with ACK to

received FINs

Step 4: server, receives ACK.

Connection closed.

Step 5: after timeout, client ’s

connection closed

client server

closing

closing

closed

ti
m

ed
 w

ai
t

closed

3-31

TCP Connection Management (cont)

TCP client

lifecycle

TCP server

lifecycle

TCP Finite State Machine

•TCP connection management Finite

State Machine: 3-Way Handshake

•The heavy solid line is the normal

path for a client.

•The heavy dashed line is the normal

path for a server.

Step 1 of the 3-way

handshake

Step 2 of the 3-way

handshake

Step 3 of the 3-way

handshake

Network Layer 4-33

Chapter 4

Network Layer

Computer Networking: A

Top Down Approach

5th edition.

Jim Kurose, Keith Ross

Addison-Wesley, April

2009.

Network Layer 4-34

Network Layer

Goals

 Understand principles behind network layer services

– Network layer service models

– Forwarding versus routing

– How a router works

– Routing (path selection)

– Broadcast, multicast

 Instantiation, implementation in the Internet

Network Layer 4-35

Chapter 4: Network Layer

4. 1 Introduction

4.2 What’s inside a router

4.4 IP: Internet Protocol

4.5 Routing algorithms

– Link state

– Distance Vector

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

Network Layer 4-36

Network layer

 Transport segment from

sending to receiving host

 On sending side encapsulates

segments into datagrams

 On rcving side, delivers

segments to transport layer

 Network layer protocols in

every host, router

 Router examines header

fields in all IP datagrams

passing through it

application

transport

network

data link

physical

application

transport

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

Network Layer 4-37

Two Key Network-Layer Functions

 Forwarding

– move packets from router’s

input to appropriate router

output

 Routing

– determine route taken by

packets from source to dest.

– routing algorithms

Analogy:

 Routing

• process of planning trip from

source to destination

 Forwarding

• process of getting through

single interchange

38

Routing vs. Forwarding

R

R

R
A

B

C

D

R1

R2

R3

R4 R5

E
Net Nxt Hop

R4

R3

R3

R4

Direct

R4

Net Nxt Hop

 A

 B

 C

 D

 E

default

R2

R2

Direct

R5

R5

R2

Net Nxt Hop

 A

 B

 C

 D

 E

default

R1

Direct

R3

R1

R3

R1

Default to

upstream

router

 A

 B

 C

 D

 E

default

Forwarding: determine next hop

Routing: establish end-to-end paths

Forwarding always works

Routing can be badly broken

Thanks to T. Griffin

39

How Are Forwarding Tables Populated to I

Implement Routing?

Statically Dynamically
Routers exchange network reachability

information using ROUTING PROTOCOLS.

Routers use this to compute best routes

Administrator

manually configures

forwarding table entries

 In practice : a mix of these.

Static routing mostly at the “edge”

+ More control

+ Not restricted to

 destination-based

 forwarding

- Doesn’t scale

- Slow to adapt to

 network failures

+ Can rapidly adapt to changes

 in network topology

+ Can be made to scale well

- Complex distributed algorithms

- Consume CPU, Bandwidth, Memory

- Debugging can be difficult

- Current protocols are destination-based

Thanks to T. Griffin

Network reachability

Routing info

Routing info

4-40

Network Layer

4-41

1
2 3

0111

value in arriving

packet’s header

routing algorithm

local forwarding table

header value output link

0100

0101

0111

1001

3

2

2

1

Interplay between routing and forwarding

Network Layer 4-42

Chapter 4: Network Layer

4. 1 Introduction

4.2 What’s inside a router

4.4 IP: Internet Protocol

4.5 Routing algorithms

– Link state

– Distance Vector

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

Network Layer 4-43

Datagram Networks

 No call setup at network layer

 Routers: no state about end-to-end connections

– no network-level concept of “connection”

 Packets forwarded using destination host address

– packets between same source-dest pair may take different

paths

application

transport

network

data link

physical

application

transport

network

data link

physical

1. Send data 2. Receive data

Network Layer 4-44

Datagram Forwarding Table

1
2 3

IP destination address in

arriving packet’s header

routing algorithm

local forwarding table

dest address output link

address-range 1

address-range 2

address-range 3

address-range 4

3

2

2

1

4 billion IP addresses, so

rather than list individual

destination address

list range of addresses

(aggregate table entries)

Network Layer 4-45

Longest prefix matching

Destination Address Range

11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********

otherwise

DA: 11001000 00010111 00011000 10101010

Examples:
DA: 11001000 00010111 00010110 10100001 Which interface?

Which interface?

when looking for forwarding table entry for given destination address, use

longest address prefix that matches destination address.

Longest prefix matching

Link interface

0

1

2

3

Network Layer 4-46

Chapter 4: Network Layer

4. 1 Introduction

4.2 What’s inside a router

4.4 IP: Internet Protocol

4.5 Routing algorithms

– Link state

– Distance Vector

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

Network Layer
4-47

Router Architecture Overview

Two key router functions:
– run routing algorithms/protocol (RIP, OSPF, BGP)

– forwarding datagrams from incoming to outgoing link

switching
fabric

routing
processor

router input ports router output ports

Network Layer 4-48

The Internet Network Layer

forwarding

table

Host, router network layer functions:

Routing protocols

•path selection

•RIP, OSPF, BGP

IP protocol

•addressing conventions

•datagram format

•packet handling conventions

ICMP protocol

•error reporting

•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network

layer

Network Layer 4-49

Chapter 4: Network Layer

4. 1 Introduction

4.2 Virtual circuit and

datagram networks

4.3 What’s inside a router

4.4 IP: Internet Protocol

– Datagram format

– IPv4 addressing

– ICMP

– IPv6

4.5 Routing algorithms

– Link state

– Distance Vector

– Hierarchical routing

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

4.7 Broadcast and

multicast routing

Network Layer 4-52

Chapter 4: Network Layer

4. 1 Introduction

4.2 What’s inside a router

4.4 IP: Internet Protocol

4.5 Routing algorithms

– Link state

– Distance Vector

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

Network Layer

4-53

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z),

(y,z) }

Graph abstraction

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-54

Graph Abstraction: Costs

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

• c(x,x’) = cost of link (x,x’)

 - e.g., c(w,z) = 5

• Cost could always be 1, or

inversely related to bandwidth,

or inversely related to congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Question: What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

Network Layer
4-55

Routing Algorithm Classification

Global or decentralized

information?

Global:

 All routers have complete

topology, link cost info

– “Link state” algorithms

Decentralized:

 Router knows physically-

connected neighbors, link costs

to neighbors

 Iterative process of computation,

exchange of info with neighbors

– “Distance vector” algorithms

Static or dynamic?

Static:
 routes change slowly over time

Dynamic:

 routes change more quickly

– periodic update

– in response to link cost

changes

 Topology information is flooded

within the routing domain

 Best end-to-end paths are

computed locally at each router

 Best end-to-end paths

determine next-hops

 Based on minimizing some

notion of distance

 Works only if policy is shared

and uniform

 Examples: OSPF, IS-IS

 Each router knows little about

network topology

 Only best next-hops are chosen

by each router for each

destination network

 Best end-to-end paths result

from composition of all next-hop

choices

 Does not require any notion of

distance

 Does not require uniform

policies at all routers

 Examples: RIP, BGP

Link State
Vectoring

Routing Algorithm Classification

ICNP 2002

The Gang of Four

Link State Vectoring

EGP

IGP

BGP

RIP
IS-IS

OSPF

Routers Talking to Routers

Routing info

Routing info

• Routing computation is distributed among routers within a routing

domain

• Computation of best next hop based on routing information is the

most CPU/memory intensive task on a router

4-58

Architecture of Dynamic Routing

AS 1

AS 2

 BGP

 EGP = Exterior Gateway Protocol

 IGP = Interior Gateway Protocol

 Metric based: OSPF, IS-IS, RIP,

 EIGRP (cisco)

Policy based: BGP

OSPF

EIGRP

4-59

Network Layer 4-60

Chapter 4: Network Layer

4. 1 Introduction

4.2 What’s inside a router

4.4 IP: Internet Protocol

4.5 Routing algorithms

– Link state

– Distance Vector

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

Network Layer 4-61

A Link-State Routing Algorithm

Dijkstra’s Algorithm

 Net topology, link costs

known to all nodes

– accomplished via “link state

broadcast”

– all nodes have same info

 Computes least cost paths

from one node (‘source”) to

all other nodes

– gives forwarding table for

that node

 Iterative: after k iterations,

know least cost path to k

dest.’s

Notation

 c(x,y): link cost from node x

to y = ∞ if not direct

neighbors

 D(v): current value of cost

of path from source to dest. v

 p(v): predecessor node

along path from source to v

 N': set of nodes whose least

cost path definitively known

Network Layer 4-62

Dijkstra’s Algorithm: Example

Step

0

N'

u

D(v),p(v)

2,u
D(w),p(w)

5,u

D(x),p(x)

1,u

D(y),p(y)

∞
D(z),p(z)

∞

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

v, w and x are u’s neighbors

Step 0: Add D(v) for all v on the graph

Network Layer 4-63

Dijkstra’s Algorithm: Example

Step

0

1

N'

u

ux

D(v),p(v)

2,u

2,u

D(w),p(w)

5,u

4,x

D(x),p(x)

1,u

D(y),p(y)

∞

2,x

D(z),p(z)

∞

∞

Step 1:

a. Find node x not in N’ such that D(x) is a minimum

b. Add x in set N’

c. Update D(v) for all v adjacent to x and not in N’ using

D(v) = min(D(v), D(x) + c(x,v)) //update costs to reach x’s neighbors

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

Network Layer 4-64

Dijkstra’s Algorithm: Example

Step

0

1

2

N'

u

ux

uxy

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

D(x),p(x)

1,u

D(y),p(y)

∞

2,x

D(z),p(z)

∞

∞

4,y

Step 2:

• Find node y not in N’ such that D(y) is a minimum; add y in N’

• Update costs to reach y’s neighbors v that are not in N’ using

D(v) = min(D(v), D(y) + c(y,v))

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

Network Layer 4-66

Dijkstra’s algorithm: Example (2)

u

y x

w v

z

Resulting shortest-path tree from u:

v
x

y

w

z

(u,v)
(u,x)

(u,x)
(u,x)

(u,x)

destination link

Resulting forwarding table in u:

Network Layer 4-67

Dijsktra’s Algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Network Layer
4-68

w 3

4

v

x

u

5

3

7 4

y

8

z
2

7

9

Dijkstra’s algorithm: example

Step

N'

D(v)

p(v)

0

1

2

3

4

5

D(w)

p(w)

D(x)

p(x)

D(y)

p(y)

D(z)

p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx

uwxv 14,x 10,v

uwxvy 12,y

Notes:

 Construct shortest path tree by

tracing predecessor nodes

 Ties can exist (can be broken

arbitrarily)

uwxvyz

Network Layer
4-69

Dijkstra’s Algorithm: Discussion

Algorithm complexity: n nodes
– Each iteration: need to check all nodes, w, not in N

– n(n+1)/2 comparisons: O(n2)

– More efficient implementations possible: O(nlogn)

Oscillations possible:
– e.g., link cost = amount of carried traffic

A

D

C

B

1 1+e

e 0

e

1 1

0 0

A

D

C

B

2+e 0

0 0
1+e 1

A

D

C

B

0 2+e

1+e 1
0 0

A

D

C

B

2+e 0

e 0
1+e 1

initially
… recompute

routing

… recompute … recompute

D A, B A, C A

Network Layer 4-70

Chapter 4: Network Layer

4. 1 Introduction

4.2 What’s inside a router

4.4 IP: Internet Protocol

4.5 Routing algorithms

– Link state

– Distance Vector

4.6 Routing in the Internet

– RIP

– OSPF

– BGP

Network Layer 4-71

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

 Define

dx(y) := cost of least-cost path from x to y

Then

dx(y) = min {c(x,v) + dv(y) }

where min is taken over all neighbors v of x

v

Network Layer 4-72

Bellman-Ford example

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5
Clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),

 c(u,x) + dx(z),

 c(u,w) + dw(z) }

 = min {2 + 5,

 1 + 3,

 5 + 3} = 4

Node that achieves minimum is next

hop in shortest path ➜ forwarding table

B-F equation says:

Network Layer 4-73

Distance Vector Algorithm

 Dx(y) = estimate of least cost from x to y

– x maintains distance vector Dx = [Dx(y): y є N]

 Input to node x:

– Node x knows cost to each neighbor v: c(x,v)

– maintains its neighbors’ distance vectors. For each neighbor

v, x maintains

Dv = [Dv(y): y є N]

Network Layer 4-74

Distance vector algorithm (4)

Basic idea

 From time-to-time, each node sends its own Distance Vector

(DV) estimate to neighbors

 When x receives new DV estimate from neighbor, it updates its

own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

 Under minor, natural conditions, the estimate Dx(y)
converge to the actual least cost dx(y)

Network Layer 4-75

Distance Vector Algorithm (5)

Iterative, asynchronous

 each local iteration caused by

– local link cost change

– DV update message from

neighbor

Distributed:

 each node notifies neighbors

only when its DV changes

– neighbors then notify their

neighbors if necessary

wait for (change in local link

cost or msg from neighbor)

recompute estimates

if DV to any dest has

changed, notify neighbors

Each node

4-76

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
o
m

cost to
fr

o
m

fr

o
m

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

∞

time

x z
1 2

7

y

node x table

node y table

node z table

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
o
m

cost to
fr

o
m

fr

o
m

x y z

x
y
z

0

fr
o
m

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞

2 0 1

∞ ∞

∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x table

node y table

node z table

3 2

Each node sends its own DV to its neighbors

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
o
m

cost to
fr

o
m

fr

o
m

x y z

x
y
z

0

fr
o
m

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞

2 0 1

∞ ∞

∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x table

node y table

node z table

3 2

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

 the next-hop router to reach y is y

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
o
m

cost to
fr

o
m

fr

o
m

x y z

x
y
z

0

fr
o
m

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞

2 0 1

∞ ∞

∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x table

node y table

node z table

3 2 the next-hop router to reach z is y

Dx(z) = min{c(x,y) + Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

Network Layer 4-80

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
o
m

cost to
fr

o
m

fr

o
m

x y z

x
y
z

0

fr
o
m

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞

2 0 1

∞ ∞

∞

2 0 1
7 1 0

time

x z
1 2

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

 Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

3 2

4-81

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to
fr

o
m

fr

o
m

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z

0 2 7
fr

o
m

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z

1 2

7

y

node x table

node y table

node z table

x y z

x
y
z

0

fr
o
m

cost to

2 0 1
7 1 0

3 2

4-82

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to
fr

o
m

fr

o
m

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z

0 2 7
fr

o
m

cost to

x y z

x

y

z

0 2 7

fr
o

m

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

2 0 1

7 1 0

2 0 1

3 1 0

x z

1 2

7

y

node x table

node y table

node z table

4-83

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to
fr

o
m

fr

o
m

x y z

x

y

z

0 2 3

fr
o

m

cost to
x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z

0 2 7
fr

o
m

cost to

x y z

x

y

z

0 2 3

fr
o
m

cost to

x y z

x

y

z

0 2 3
fr

o
m

cost to

x y z

x

y

z

0 2 7

fr
o

m

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x z

1 2

7

y

node x table

node y table

node z table

4-84

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to
fr

o
m

fr

o
m

x y z

x

y

z

0 2 3

fr
o

m

cost to
x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z

0 2 7
fr

o
m

cost to

x y z

x

y

z

0 2 3

fr
o
m

cost to

x y z

x

y

z

0 2 3
fr

o
m

cost to

x y z

x

y

z

0 2 7

fr
o

m

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x z

1 2

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

 Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

Network Layer 4-85

Distance Vector: Link cost changes

Link cost changes:

 node detects local link cost change

 updates routing info, recalculates

distance vector

 if DV changes, notify neighbors

“good

news

travels

fast”

x z

1 4

50

y
1

t0 : y detects link-cost change, updates its DV, informs its

neighbors.

t1 : z receives update from y, updates its table, computes new

least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table. y’s least costs do

not change, so y does not send a message to z.

Network Layer

4-86

Distance Vector Algorithm

 Input to x: Node x knows cost to each neighbor v: c(x,v)

 – Decentralized algorithm since it only needs local knowledge

 Distance vectors:

– Node x maintains distance (cost to y) vector Dx = [Dx(y): y є N]

– Node x also maintains its neighbors’ distance vectors:

Dv = [Dv(y): y є N], for each neighbor v of x

 Iterative, asynchronous:

– From time-to-time, each node x sends its own DV estimate Dx to

neighbors

– When a node x receives new DV estimate from neighbor, it

updates its own DV using Bellman-Ford equation:

 Output: least-cost paths from x to all other nodes

Dx(y) ← minv{c(x,v) + Dv(y)} where v are neighbors of x,

(for each node y ∊ N)

4-87

Distance Vector: link cost changes

Link cost changes:

 Good news travels fast

 Bad news travels slow - “count to infinity”

problem!

 44 iterations before algorithm stabilizes

Poisoned reverse:

 If z routes through y to get to x :

 z tells v: Dz(x) = ∞ (so v won’t route to x

via z)

 Will this completely solve count to infinity

problem?

x z

1 4

50

v
60

– Bef: Dv(x) =4, Dv(z) =1, Dz(v) =1, Dz(x) =4+1 =5

– Aft: Dv(x) = min{60, c(v,z)+ Dz(x)} = 6

– Next: Dz(x) =…= c(z,v)+Dv(x) =1+6=7

– Then: Dv(x) = c(v,z)+Dz(x) = 1+7=8

– Dv(x) = 60 Dz(x) = 50 Dv(x) =51

4-88

Comparison of LS and DV algorithms

Message complexity

 LS: with n nodes, E links,

O(nE) msgs sent

 DV: exchange between

neighbors only

– convergence time varies

Speed of Convergence

 LS: O(n2) algorithm requires

O(nE) msgs

– may have oscillations

 DV: convergence time varies

– may be routing loops

– count-to-infinity problem

Robustness: what happens

if router malfunctions?

LS:

– node can advertise

incorrect link cost

– each node computes only

its own table

DV:

– DV node can advertise

incorrect path cost

– each node’s table used by

others

• error propagate thru

network

 Topology information is flooded

within the routing domain

 Best end-to-end paths are

computed locally at each router

 Best end-to-end paths

determine next-hops

 Based on minimizing some

notion of distance

 Works only if policy is shared

and uniform

 Examples: OSPF, IS-IS

 Each router knows little about

network topology

 Only best next-hops are chosen

by each router for each

destination network

 Best end-to-end paths result

from composition of all next-hop

choices

 Does not require any notion of

distance

 Does not require uniform

policies at all routers

 Examples: RIP, BGP

Link State
Vectoring

Routing Algorithm Classification

ICNP 2002

The Gang of Four

Link State Vectoring

EGP

IGP

BGP

RIP
IS-IS

OSPF

Protocoles et Interconnexions

Course Overview and Introduction
Dario Vieira

Department of Computer Science

EFREI

